scholarly journals An exploratory spatial analysis of soil organic carbon distribution in Canadian eco-regions

Author(s):  
S.-Y. Tan ◽  
J. Li

As the largest carbon reservoir in ecosystems, soil accounts for more than twice as much carbon storage as that of vegetation biomass or the atmosphere. This paper examines spatial patterns of soil organic carbon (SOC) in Canadian forest areas at an eco-region scale of analysis. The goal is to explore the relationship of SOC levels with various climatological variables, including temperature and precipitation. The first Canadian forest soil database published in 1997 by the Canada Forest Service was analyzed along with other long-term eco-climatic data (1961 to 1991) including precipitation, air temperature, slope, aspect, elevation, and Normalized Difference Vegetation Index (NDVI) derived from remote sensing imagery. In addition, the existing eco-region framework established by Environment Canada was evaluated for mapping SOC distribution. Exploratory spatial data analysis techniques, including spatial autocorrelation analysis, were employed to examine how forest SOC is spatially distributed in Canada. Correlation analysis and spatial regression modelling were applied to determine the dominant ecological factors influencing SOC patterns at the eco-region level. At the national scale, a spatial error regression model was developed to account for spatial dependency and to estimate SOC patterns based on ecological and ecosystem factors. Based on the significant variables derived from the spatial error model, a predictive SOC map in Canadian forest areas was generated. Although overall SOC distribution is influenced by climatic and topographic variables, distribution patterns are shown to differ significantly between eco-regions. These findings help to validate the eco-region classification framework for SOC zonation mapping in Canada.

2021 ◽  
Vol 9 ◽  
Author(s):  
Xuyang Wang ◽  
Yuqiang Li ◽  
Yulong Duan ◽  
Lilong Wang ◽  
Yayi Niu ◽  
...  

Stock estimates are critical to quantifying carbon and nitrogen sequestration, quantifying greenhouse gas emissions, and understanding key biogeochemical processes (i.e., soil carbon and nutrient cycling). Many studies have assessed soil organic matter and nutrients in different ecosystems. However, the spatial distribution of carbon and nitrogen and the key influencing factors in arid desert steppe remain unclear. Here, we investigated the soil organic carbon (SOC) and soil total nitrogen (STN) to a depth of 100 cm at 126 sites in a desert steppe in northwestern China. SOC and STN contents decreased with increasing depth; the highest average SOC and STN contents were 12.70 and 0.65 g kg−1 in the surface 5 cm, and the lowest were from 80 to 100 cm (4.49 and 0.16 g kg−1, respectively). SOC density (SOCD) and STN density (STND) to a depth of 100 cm averaged 8.94 and 0.45 kg m−2, respectively. The top 1 m of the soils stored approximately 1,041 Tg SOC and 52 Tg STN in the study area. Geostatistical analysis showed strong and moderate spatial autocorrelation for SOCD in different soil layers, but the autocorrelation for STND gradually weakened with increasing depth. SOCD and STND decreased from southwest to northeast in the study area, along an elevation gradient. Both were significantly positively correlated with topographic variables, precipitation, and the normalized-difference vegetation index, but negatively correlated with temperature and aridity. More than 40% of the SOCD and STND spatial variation was explained by elevation, which was the dominant factor. The data and high-resolution maps from this study will support future soil carbon and nitrogen analyses.


2022 ◽  
Vol 43 (1) ◽  
pp. 73-84
Author(s):  
R. Madugundu ◽  
◽  
K.A. Al-Gaadi ◽  
E. Tola ◽  
M. Edrris ◽  
...  

Aim: In view of the importance of Soil Organic Carbon (SOC) in agricultural management, a study was conducted to develop a digital SOC map using remotely sensed spectral indices. The present study was conducted on the Tawdeehiya Farms, located in the central region of Saudi Arabia between Al-Kharj and Haradh cities. Methodology: Landsat-8 (L8) and Sentinel-2 (S2A) satellite images were used for the characterization of SOC stocks in the topsoil layer (0-10 cm) of the experimental fields. Soil samples were randomly collected from six (50 ha each) agricultural fields and analyzed in the laboratory for SOC (SOCA) following Walkley and Black method. While, vegetation indices (VI), such as the Normalized Difference Vegetation Index (NDVI), NDVIRedEdge, Enhanced Vegetation Index (EVI), Bare Soil Index (BSI), and Reduced Simple Ratio (RSR) were computed and subsequently used for the development of SOC prediction models. Results: Univariate linear regression technique was employed for the recognition of a suitable band/VI for SOC (SOCP) mapping. The SWIR-1 band of both L8 (R2 = 0.86) and S2A (R2 = 0.77) data was promising for predicting SOC with 16% (S2A) and 18% (L8) of BIAS. Interpretation: The NDVI and BSI (for L8 data) and BSI and RSR (for S2A data) were found most suitable VI in the prediction of SOC. The R2 values of linear regression models were 0.68 (BSI) and 0.78 (RSR), indicating that nearly 68% and 78% of the SOC could be predicted through L8 and S2A datasets, respectively.


2021 ◽  
Vol 13 (15) ◽  
pp. 8332
Author(s):  
Snežana Jakšić ◽  
Jordana Ninkov ◽  
Stanko Milić ◽  
Jovica Vasin ◽  
Milorad Živanov ◽  
...  

Topography-induced microclimate differences determine the local spatial variation of soil characteristics as topographic factors may play the most essential role in changing the climatic pattern. The aim of this study was to investigate the spatial distribution of soil organic carbon (SOC) with respect to the slope gradient and aspect, and to quantify their influence on SOC within different land use/cover classes. The study area is the Region of Niš in Serbia, which is characterized by complex topography with large variability in the spatial distribution of SOC. Soil samples at 0–30 cm and 30–60 cm were collected from different slope gradients and aspects in each of the three land use/cover classes. The results showed that the slope aspect significantly influenced the spatial distribution of SOC in the forest and vineyard soils, where N- and NW-facing soils had the highest level of organic carbon in the topsoil. There were no similar patterns in the uncultivated land. No significant differences were found in the subsoil. Organic carbon content was higher in the topsoil, regardless of the slope of the terrain. The mean SOC content in forest land decreased with increasing slope, but the difference was not statistically significant. In vineyards and uncultivated land, the SOC content was not predominantly determined by the slope gradient. No significant variations across slope gradients were found for all observed soil properties, except for available phosphorus and potassium. A positive correlation was observed between SOC and total nitrogen, clay, silt, and available phosphorus and potassium, while a negative correlation with coarse sand was detected. The slope aspect in relation to different land use/cover classes could provide an important reference for land management strategies in light of sustainable development.


2021 ◽  
Vol 13 (5) ◽  
pp. 907
Author(s):  
Theodora Lendzioch ◽  
Jakub Langhammer ◽  
Lukáš Vlček ◽  
Robert Minařík

One of the best preconditions for the sufficient monitoring of peat bog ecosystems is the collection, processing, and analysis of unique spatial data to understand peat bog dynamics. Over two seasons, we sampled groundwater level (GWL) and soil moisture (SM) ground truth data at two diverse locations at the Rokytka Peat bog within the Sumava Mountains, Czechia. These data served as reference data and were modeled with a suite of potential variables derived from digital surface models (DSMs) and RGB, multispectral, and thermal orthoimages reflecting topomorphometry, vegetation, and surface temperature information generated from drone mapping. We used 34 predictors to feed the random forest (RF) algorithm. The predictor selection, hyperparameter tuning, and performance assessment were performed with the target-oriented leave-location-out (LLO) spatial cross-validation (CV) strategy combined with forward feature selection (FFS) to avoid overfitting and to predict on unknown locations. The spatial CV performance statistics showed low (R2 = 0.12) to high (R2 = 0.78) model predictions. The predictor importance was used for model interpretation, where temperature had strong impact on GWL and SM, and we found significant contributions of other predictors, such as Normalized Difference Vegetation Index (NDVI), Normalized Difference Index (NDI), Enhanced Red-Green-Blue Vegetation Index (ERGBVE), Shape Index (SHP), Green Leaf Index (GLI), Brightness Index (BI), Coloration Index (CI), Redness Index (RI), Primary Colours Hue Index (HI), Overall Hue Index (HUE), SAGA Wetness Index (TWI), Plan Curvature (PlnCurv), Topographic Position Index (TPI), and Vector Ruggedness Measure (VRM). Additionally, we estimated the area of applicability (AOA) by presenting maps where the prediction model yielded high-quality results and where predictions were highly uncertain because machine learning (ML) models make predictions far beyond sampling locations without sampling data with no knowledge about these environments. The AOA method is well suited and unique for planning and decision-making about the best sampling strategy, most notably with limited data.


2015 ◽  
Vol 3 (5) ◽  
pp. 3225-3250
Author(s):  
H. Z. Zhang ◽  
J. R. Fan ◽  
X. M. Wang ◽  
T. H. Chi ◽  
L. Peng

Abstract. The 2008 Wenchuan earthquake destroyed large areas of vegetation. Presently, these areas of damaged vegetation are at various stages of recovery. In this study, we present a probabilistic approach for slope stability analysis that quantitatively relates data on earthquake-damaged vegetation with slope stability in a given river basin. The Mianyuan River basin was selected for model development, and earthquake-damaged vegetation and post-earthquake recovery conditions were identified via the normalized difference vegetation index (NDVI), from multi-temporal (2001–2014) remote sensing images. DSAL (digital elevation model, slope, aspect, and lithology) spatial zonation was applied to characterize the survival environments of vegetation, which were used to discern the relationships between successful vegetation regrowth and environmental conditions. Finally, the slope stability susceptibility model was trained through multivariate analysis of earthquake-damaged vegetation and its controlling factors (i.e. topographic environments and material properties). Application to the Subao River basin validated the proposed model, showing that most of the damaged vegetation areas have high susceptibility levels (88.1% > susceptibility level 3, and 61.5% > level 4). Our modelling approach may also be valuable for use in other regions prone to landslide hazards.


2020 ◽  
Vol 12 (22) ◽  
pp. 3705
Author(s):  
Ana Novo ◽  
Noelia Fariñas-Álvarez ◽  
Joaquín Martínez-Sánchez ◽  
Higinio González-Jorge ◽  
José María Fernández-Alonso ◽  
...  

The optimization of forest management in roadsides is a necessary task in terms of wildfire prevention in order to mitigate their effects. Forest fire risk assessment identifies high-risk locations, while providing a decision-making support about vegetation management for firefighting. In this study, nine relevant parameters: elevation, slope, aspect, road distance, settlement distance, fuel model types, normalized difference vegetation index (NDVI), fire weather index (FWI), and historical fire regimes, were considered as indicators of the likelihood of a forest fire occurrence. The parameters were grouped in five categories: topography, vegetation, FWI, historical fire regimes, and anthropogenic issues. This paper presents a novel approach to forest fire risk mapping the classification of vegetation in fuel model types based on the analysis of light detection and ranging (LiDAR) was incorporated. The criteria weights that lead to fire risk were computed by the analytic hierarchy process (AHP) and applied to two datasets located in NW Spain. Results show that approximately 50% of the study area A and 65% of the study area B are characterized as a 3-moderate fire risk zone. The methodology presented in this study will allow road managers to determine appropriate vegetation measures with regards to fire risk. The automation of this methodology is transferable to other regions for forest prevention planning and fire mitigation.


2015 ◽  
Vol 45 (2) ◽  
pp. 167-174 ◽  
Author(s):  
Symone Maria de Melo FIGUEIREDO ◽  
Eduardo Martins VENTICINQUE ◽  
Evandro Orfanó FIGUEIREDO ◽  
Evandro José Linhares FERREIRA

Species distribution modeling has relevant implications for the studies of biodiversity, decision making about conservation and knowledge about ecological requirements of the species. The aim of this study was to evaluate if the use of forest inventories can improve the estimation of occurrence probability, identify the limits of the potential distribution and habitat preference of a group of timber tree species. The environmental predictor variables were: elevation, slope, aspect, normalized difference vegetation index (NDVI) and height above the nearest drainage (HAND). To estimate the distribution of species we used the maximum entropy method (Maxent). In comparison with a random distribution, using topographic variables and vegetation index as features, the Maxent method predicted with an average accuracy of 86% the geographical distribution of studied species. The altitude and NDVI were the most important variables. There were limitations to the interpolation of the models for non-sampled locations and that are outside of the elevation gradient associated with the occurrence data in approximately 7% of the basin area. Ceiba pentandra (samaúma), Castilla ulei (caucho) and Hura crepitans (assacu) is more likely to occur in nearby water course areas. Clarisia racemosa (guariúba), Amburana acreana (cerejeira), Aspidosperma macrocarpon (pereiro), Apuleia leiocarpa (cumaru cetim), Aspidosperma parvifolium (amarelão) and Astronium lecointei (aroeira) can also occur in upland forest and well drained soils. This modeling approach has potential for application on other tropical species still less studied, especially those that are under pressure from logging.


2020 ◽  
Vol 39 (2) ◽  
pp. 159-173
Author(s):  
Rastislav Skalský ◽  
Štefan Koco ◽  
Gabriela Barančíková ◽  
Zuzana Tarasovičová ◽  
Ján Halas ◽  
...  

AbstractSoil organic carbon (SOC) in agricultural land forms part of the global terrestrial carbon cycle and it affects atmospheric carbon dioxide balance. SOC is sensitive to local agricultural management practices that sum up into regional SOC storage dynamics. Understanding regional carbon emission and sequestration trends is, therefore, important in formulating and implementing climate change adaptation and mitigation policies. In this study, the estimation of SOC stock and regional storage dynamics in the Ondavská Vrchovina region (North-Eastern Slovakia) cropland and grassland topsoil between 1970 and 2013 was performed with the RothC model and gridded spatial data on weather, initial SOC stock and historical land cover and land use changes. Initial SOC stock in the 0.3-m topsoil layer was estimated at 38.4 t ha−1 in 1970. The 2013 simulated value was 49.2 t ha−1, and the 1993–2013 simulated SOC stock values were within the measured data range. The total SOC storage in the study area, cropland and grassland areas, was 4.21 Mt in 1970 and 5.16 Mt in 2013, and this 0.95 Mt net SOC gain was attributed to inter-conversions of cropland and grassland areas between 1970 and 2013, which caused different organic carbon inputs to the soil during the simulation period with a strong effect on SOC stock temporal dynamics.


Author(s):  
J.-S. Lai ◽  
F. Tsai ◽  
S.-H. Chiang

This study implements a data mining-based algorithm, the random forests classifier, with geo-spatial data to construct a regional and rainfall-induced landslide susceptibility model. The developed model also takes account of landslide regions (source, non-occurrence and run-out signatures) from the original landslide inventory in order to increase the reliability of the susceptibility modelling. A total of ten causative factors were collected and used in this study, including aspect, curvature, elevation, slope, faults, geology, NDVI (Normalized Difference Vegetation Index), rivers, roads and soil data. Consequently, this study transforms the landslide inventory and vector-based causative factors into the pixel-based format in order to overlay with other raster data for constructing the random forests based model. This study also uses original and edited topographic data in the analysis to understand their impacts to the susceptibility modeling. Experimental results demonstrate that after identifying the run-out signatures, the overall accuracy and Kappa coefficient have been reached to be become more than 85 % and 0.8, respectively. In addition, correcting unreasonable topographic feature of the digital terrain model also produces more reliable modelling results.


Sign in / Sign up

Export Citation Format

Share Document