scholarly journals Estimation of soil organic carbon in agricultural fields: A remote sensing approach

2022 ◽  
Vol 43 (1) ◽  
pp. 73-84
Author(s):  
R. Madugundu ◽  
◽  
K.A. Al-Gaadi ◽  
E. Tola ◽  
M. Edrris ◽  
...  

Aim: In view of the importance of Soil Organic Carbon (SOC) in agricultural management, a study was conducted to develop a digital SOC map using remotely sensed spectral indices. The present study was conducted on the Tawdeehiya Farms, located in the central region of Saudi Arabia between Al-Kharj and Haradh cities. Methodology: Landsat-8 (L8) and Sentinel-2 (S2A) satellite images were used for the characterization of SOC stocks in the topsoil layer (0-10 cm) of the experimental fields. Soil samples were randomly collected from six (50 ha each) agricultural fields and analyzed in the laboratory for SOC (SOCA) following Walkley and Black method. While, vegetation indices (VI), such as the Normalized Difference Vegetation Index (NDVI), NDVIRedEdge, Enhanced Vegetation Index (EVI), Bare Soil Index (BSI), and Reduced Simple Ratio (RSR) were computed and subsequently used for the development of SOC prediction models. Results: Univariate linear regression technique was employed for the recognition of a suitable band/VI for SOC (SOCP) mapping. The SWIR-1 band of both L8 (R2 = 0.86) and S2A (R2 = 0.77) data was promising for predicting SOC with 16% (S2A) and 18% (L8) of BIAS. Interpretation: The NDVI and BSI (for L8 data) and BSI and RSR (for S2A data) were found most suitable VI in the prediction of SOC. The R2 values of linear regression models were 0.68 (BSI) and 0.78 (RSR), indicating that nearly 68% and 78% of the SOC could be predicted through L8 and S2A datasets, respectively.

2021 ◽  
Author(s):  
chao wang ◽  
Chuanyan Zhao ◽  
Kaiming Li ◽  
Shouzhang Peng ◽  
Ying Wang

Abstract Soil organic carbon and soil total nitrogen stocks are important indicators for evaluating soil health and stability. Accurately predicting the spatial distribution of soil organic carbon and total nitrogen stocks is an important basis for mitigating global warming, ensuring regional food security, and maintaining the sustainable development of ecologically fragile areas. On the basis of field sampling data and remote sensing technology, this study divided the topsoil (0–30 cm) into three soil layers of 0–10 cm, 10–20 cm, and 20–30 cm to carry out soil organic carbon and soil total nitrogen stocks estimation experiments in the Qilian Mountains in western China. A multiple linear regression model and a stepwise multiple linear regression model were used to estimate soil organic carbon and soil total nitrogen stocks. A total of 119 topsoil samples and nine remotely sensed environmental variables were collected and used for model development and validation. The results indicated that these two linear regression models showed good performance. The modified soil-adjusted vegetation index (MSAVI), perpendicular vegetation index (PVI), aspect, elevation, and solar radiation were the key environmental variables affecting soil organic carbon and total nitrogen stocks. In topsoil, remote sensing technology could be used to predict the soil properties in layers; however, as the soil depth increased, the performance of the linear regression models gradually decreased.


2019 ◽  
Vol 11 (18) ◽  
pp. 2121 ◽  
Author(s):  
Fabio Castaldi ◽  
Sabine Chabrillat ◽  
Axel Don ◽  
Bas van Wesemael

Soil organic carbon (SOC) loss is one of the main causes of soil degradation in croplands. Thus, spatial and temporal monitoring of SOC is extremely important, both from the environmental and economic perspective. In this regard, the high temporal, spatial, and spectral resolution of the Sentinel-2 data can be exploited for monitoring SOC contents in the topsoil of croplands. In this study, we aim to test the effect of the threshold for a spectral index linked to soil moisture and crop residues on the performance of SOC prediction models using the Multi-Spectral Instrument (MSI) Sentinel-2 and the European Land Use/cover Area frame Statistical survey (LUCAS) topsoil database. The LUCAS spectral data resampled according to MSI/Sentinel-2 bands, which were used to build SOC prediction models combining pairs of the bands. The SOC models were applied to a Sentinel-2 image acquired in North-Eastern Germany after removing the pixels characterized by clouds and green vegetation. Then, we tested different thresholds of the Normalized Burn Ratio 2 (NBR2) index in order to mask moist soil pixels and those with dry vegetation and crop residues. The model accuracy was tested on an independent validation database and the best ratio of performance to deviation (RPD) was obtained using the average between bands B6 and B5 (Red-Edge Carbon Index: RE-CI) (RPD: 4.4) and between B4 and B5 (Red-Red-Edge Carbon Index: RRE-CI) (RPD: 2.9) for a very low NBR2 threshold (0.05). Employing a higher NBR2 tolerance (higher NBR2 values), the mapped area increases to the detriment of the validation accuracy. The proposed approach allowed us to accurately map SOC over a large area exploiting the LUCAS spectral library and, thus, avoid a new ad hoc field campaign. Moreover, the threshold for selecting the bare soil pixels can be tuned, according to the goal of the survey. The quality of the SOC map for each tolerance level can be judged based on the figures of merit of the model.


Author(s):  
Mfoniso Asuquo Enoh ◽  
Uzoma Chinenye Okeke ◽  
Needam Yiinu Barinua

Remote Sensing is an excellent tool in monitoring, mapping and interpreting areas, associated with hydrocarbon micro-seepage. An important technique in remote sensing known as the Soil Adjusted Vegetation Index (SAVI), adopted in many studies is often used to minimize the effect of brightness reflectance in the Normalized Difference Vegetation Index (NDVI), related with soil in areas of spare vegetation cover, and mostly in areas of arid and semi–arid regions. The study aim at analyzing the effect of hydrocarbon micro – seepage on soil and sediments in Ugwueme, Southern Eastern Nigeria, with SAVI image classification method. To achieve this aim, three cloud free Landsat images, of Landsat 7 TM 1996 and ETM+ 2006 and Landsat 8 OLI 2016 were utilized to produce different SAVI image classification maps for the study.  The SAVI image classification analysis for the study showed three classes viz Low class cover, Moderate class cover and high class cover.  The category of high SAVI density classification was observed to increase progressive from 31.95% in 1996 to 34.92% in 2006 and then to 36.77% in 2016. Moderately SAVI density classification reduced from 40.53% in 1996 to 38.77% in 2006 and then to 36.96% in 2016 while Low SAVI density classification decrease progressive from 27.51% in 1996 to 26.31% in 2006 and then increased to 28.26% in 2016. The SAVI model is categorized into three classes viz increase, decrease and unchanged. The un – changed category increased from 12.32km2 (15.06%) in 1996 to 17.17 km2 (20.96%) in 2006 and then decelerate to 13.50 km2 (16.51%) in 2016.  The decrease category changed from 39.89km2 (48.78%) in 1996 to 40.45 km2 (49.45%) in 2006 and to 51.52 km2 (63.0%) in 2016 while the increase category changed from 29.57km2 (36.16%) in 1996 to 24.18 km2 (29.58%) in 2006 and to 16.75 km2 (20.49%) in 2016. Image differencing, cross tabulation and overlay operations were some of the techniques performed in the study, to ascertain the effect of hydrocarbon micro - seepage.  The Markov chain analysis was adopted to model and predict the effect of the hydrocarbon micro - seepage for the study for 2030.  The study expound that the SAVI is an effective technique in remote sensing to identify, map and model the effect of hydrocarbon micro - seepage on soil and sediment particularly in areas characterized with low vegetation cover and bare soil cover.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xuyang Wang ◽  
Yuqiang Li ◽  
Yulong Duan ◽  
Lilong Wang ◽  
Yayi Niu ◽  
...  

Stock estimates are critical to quantifying carbon and nitrogen sequestration, quantifying greenhouse gas emissions, and understanding key biogeochemical processes (i.e., soil carbon and nutrient cycling). Many studies have assessed soil organic matter and nutrients in different ecosystems. However, the spatial distribution of carbon and nitrogen and the key influencing factors in arid desert steppe remain unclear. Here, we investigated the soil organic carbon (SOC) and soil total nitrogen (STN) to a depth of 100 cm at 126 sites in a desert steppe in northwestern China. SOC and STN contents decreased with increasing depth; the highest average SOC and STN contents were 12.70 and 0.65 g kg−1 in the surface 5 cm, and the lowest were from 80 to 100 cm (4.49 and 0.16 g kg−1, respectively). SOC density (SOCD) and STN density (STND) to a depth of 100 cm averaged 8.94 and 0.45 kg m−2, respectively. The top 1 m of the soils stored approximately 1,041 Tg SOC and 52 Tg STN in the study area. Geostatistical analysis showed strong and moderate spatial autocorrelation for SOCD in different soil layers, but the autocorrelation for STND gradually weakened with increasing depth. SOCD and STND decreased from southwest to northeast in the study area, along an elevation gradient. Both were significantly positively correlated with topographic variables, precipitation, and the normalized-difference vegetation index, but negatively correlated with temperature and aridity. More than 40% of the SOCD and STND spatial variation was explained by elevation, which was the dominant factor. The data and high-resolution maps from this study will support future soil carbon and nitrogen analyses.


Author(s):  
E. Alcaras ◽  
P. P. Amoroso ◽  
C. Parente ◽  
G. Prezioso

Abstract. Apps available for Smartphone, as well as software for GNSS/GIS devices, permit to easily mapping the localization and shape of an area by acquiring the vertices coordinates of its contour. This option is useful for remote sensing classification, supporting the detection of representative sample sites of a known cover type to use for algorithm training or to test classification results. This article aims to analyse the possibility to produce smart maps from remotely sensed image classification in rapid way: the attention is focalized on different methods that are compared to identify fast and accurate procedure for producing up-to-date and reliable maps. Landsat 8 OLI multispectral images of northern Sicily (Italy) are submitted to various classification algorithms to distinguish water, bare soil and vegetation. The resulting map is useful for many purposes: appropriately inserted in a larger database aimed at representing the situation in a space-time evolutionary scenario, it is suitable whenever you want to capture the variation induced in a scene, e.g. burnt areas identification, vegetated areas definition for tourist-recreational purposes, etc. Particularly, pixel-based classification approaches are preferred, and experiments are carried out using unsupervised (k-means), vegetation index (NDVI, Normalized Difference Vegetation Index), supervised (minimum distance, maximum likelihood) methods. Using test sites, confusion matrix is built for each method, and quality indices are calculated to compare the results. Experiments demonstrate that NDVI submitted to k-means algorithm allows the best performance for distinguishing not only vegetation areas but also water bodies and bare soils. The resulting thematic map is converted for web publishing.


Author(s):  
S.-Y. Tan ◽  
J. Li

As the largest carbon reservoir in ecosystems, soil accounts for more than twice as much carbon storage as that of vegetation biomass or the atmosphere. This paper examines spatial patterns of soil organic carbon (SOC) in Canadian forest areas at an eco-region scale of analysis. The goal is to explore the relationship of SOC levels with various climatological variables, including temperature and precipitation. The first Canadian forest soil database published in 1997 by the Canada Forest Service was analyzed along with other long-term eco-climatic data (1961 to 1991) including precipitation, air temperature, slope, aspect, elevation, and Normalized Difference Vegetation Index (NDVI) derived from remote sensing imagery. In addition, the existing eco-region framework established by Environment Canada was evaluated for mapping SOC distribution. Exploratory spatial data analysis techniques, including spatial autocorrelation analysis, were employed to examine how forest SOC is spatially distributed in Canada. Correlation analysis and spatial regression modelling were applied to determine the dominant ecological factors influencing SOC patterns at the eco-region level. At the national scale, a spatial error regression model was developed to account for spatial dependency and to estimate SOC patterns based on ecological and ecosystem factors. Based on the significant variables derived from the spatial error model, a predictive SOC map in Canadian forest areas was generated. Although overall SOC distribution is influenced by climatic and topographic variables, distribution patterns are shown to differ significantly between eco-regions. These findings help to validate the eco-region classification framework for SOC zonation mapping in Canada.


2021 ◽  
Vol 13 (1) ◽  
pp. 443-453
Author(s):  
Abduldaem S. Alqasemi ◽  
Majed Ibrahim ◽  
Ayad M. Fadhil Al-Quraishi ◽  
Hakim Saibi ◽  
A’kif Al-Fugara ◽  
...  

Abstract Soil salinization is a ubiquitous global problem. The literature supports the integration of remote sensing (RS) techniques and field measurements as effective methods for developing soil salinity prediction models. The objectives of this study were to (i) estimate the level of soil salinity in Abu Dhabi using spectral indices and field measurements and (ii) develop a model for detecting and mapping soil salinity variations in the study area using RS data. We integrated Landsat 8 data with the electrical conductivity measurements of soil samples taken from the study area. Statistical analysis of the integrated data showed that the normalized difference vegetation index and bare soil index showed moderate correlations among the examined indices. The relation between these two indices can contribute to the development of successful soil salinity prediction models. Results show that 31% of the soil in the study area is moderately saline and 46% of the soil is highly saline. The results support that geoinformatic techniques using RS data and technologies constitute an effective tool for detecting soil salinity by modeling and mapping the spatial distribution of saline soils. Furthermore, we observed a low correlation between soil salinity and the nighttime land surface temperature.


2019 ◽  
Vol 21 (2) ◽  
pp. 1310-1320
Author(s):  
Cícera Celiane Januário da Silva ◽  
Vinicius Ferreira Luna ◽  
Joyce Ferreira Gomes ◽  
Juliana Maria Oliveira Silva

O objetivo do presente trabalho é fazer uma comparação entre a temperatura de superfície e o Índice de Vegetação por Diferença Normalizada (NDVI) na microbacia do rio da Batateiras/Crato-CE em dois períodos do ano de 2017, um chuvoso (abril) e um seco (setembro) como também analisar o mapa de diferença de temperatura nesses dois referidos períodos. Foram utilizadas imagens de satélite LANDSAT 8 (banda 10) para mensuração de temperatura e a banda 4 e 5 para geração do NDVI. As análises demonstram que no mês de abril a temperatura da superfície variou aproximadamente entre 23.2ºC e 31.06ºC, enquanto no mês correspondente a setembro, os valores variaram de 25°C e 40.5°C, sendo que as maiores temperaturas foram encontradas em locais com baixa densidade de vegetação, de acordo com a carta de NDVI desses dois meses. A maior diferença de temperatura desses dois meses foi de 14.2°C indicando que ocorre um aumento da temperatura proporcionado pelo período que corresponde a um dos mais secos da região, diferentemente de abril que está no período de chuvas e tem uma maior umidade, presença de vegetação e corpos d’água que amenizam a temperatura.Palavras-chave: Sensoriamento Remoto; Vegetação; Microbacia.                                                                                  ABSTRACTThe objective of the present work is to compare the surface temperature and the Normalized Difference Vegetation Index (NDVI) in the Batateiras / Crato-CE river basin in two periods of 2017, one rainy (April) and one (September) and to analyze the temperature difference map in these two periods. LANDSAT 8 (band 10) satellite images were used for temperature measurement and band 4 and 5 for NDVI generation. The analyzes show that in April the surface temperature varied approximately between 23.2ºC and 31.06ºC, while in the month corresponding to September, the values ranged from 25ºC and 40.5ºC, and the highest temperatures were found in locations with low density of vegetation, according to the NDVI letter of these two months. The highest difference in temperature for these two months was 14.2 ° C, indicating that there is an increase in temperature provided by the period that corresponds to one of the driest in the region, unlike April that is in the rainy season and has a higher humidity, presence of vegetation and water bodies that soften the temperature.Key-words: Remote sensing; Vegetation; Microbasin.RESUMENEl objetivo del presente trabajo es hacer una comparación entre la temperatura de la superficie y el Índice de Vegetación de Diferencia Normalizada (NDVI) en la cuenca Batateiras / Crato-CE en dos períodos de 2017, uno lluvioso (abril) y uno (Septiembre), así como analizar el mapa de diferencia de temperatura en estos dos períodos. Las imágenes de satélite LANDSAT 8 (banda 10) se utilizaron para la medición de temperatura y las bandas 4 y 5 para la generación de NDVI. Los análisis muestran que en abril la temperatura de la superficie varió aproximadamente entre 23.2ºC y 31.06ºC, mientras que en el mes correspondiente a septiembre, los valores oscilaron entre 25 ° C y 40.5 ° C, y las temperaturas más altas se encontraron en lugares con baja densidad de vegetación, según el gráfico NDVI de estos dos meses. La mayor diferencia de temperatura de estos dos meses fue de 14.2 ° C, lo que indica que hay un aumento en la temperatura proporcionada por el período que corresponde a uno de los más secos de la región, a diferencia de abril que está en la temporada de lluvias y tiene una mayor humedad, presencia de vegetación y cuerpos de agua que suavizan la temperatura.Palabras clave: Detección remota; vegetación; Cuenca.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 340
Author(s):  
Ewa Panek ◽  
Dariusz Gozdowski

In this study, the relationships between normalized difference vegetation index (NDVI) obtained based on MODIS satellite data and grain yield of all cereals, wheat and barley at a country level were analyzed. The analysis was performed by using data from 2010–2018 for 20 European countries, where percentage of cereals is high (at least 35% of the arable land). The analysis was performed for each country separately and for all of the collected data together. The relationships between NDVI and cumulative NDVI (cNDVI) were analyzed by using linear regression. Relationships between NDVI in early spring and grain yield of cereals were very strong for Croatia, Czechia, Germany, Hungary, Latvia, Lithuania, Poland and Slovakia. This means that the yield prediction for these countries can be as far back as 4 months before the harvest. The increase of NDVI in early spring was related to the increase of grain yield by about 0.5–1.6 t/ha. The cumulative of averaged NDVI gives more stable prediction of grain yield per season. For France and Belgium, the relationships between NDVI and grain yield were very weak.


Author(s):  
Ziwei Xiao ◽  
Xuehui Bai ◽  
Mingzhu Zhao ◽  
Kai Luo ◽  
Hua Zhou ◽  
...  

Abstract Shaded coffee systems can mitigate climate change by fixation of atmospheric carbon dioxide (CO2) in soil. Understanding soil organic carbon (SOC) storage and the factors influencing SOC in coffee plantations are necessary for the development of sound land management practices to prevent land degradation and minimize SOC losses. This study was conducted in the main coffee-growing regions of Yunnan; SOC concentrations and storage of shaded and unshaded coffee systems were assessed in the top 40 cm of soil. Relationships between SOC concentration and factors affecting SOC were analysed using multiple linear regression based on the forward and backward stepwise regression method. Factors analysed were soil bulk density (ρb), soil pH, total nitrogen of soil (N), mean annual temperature (MAT), mean annual moisture (MAM), mean annual precipitation (MAP) and elevations (E). Akaike's information criterion (AIC), coefficient of determination (R2), root mean square error (RMSE) and residual sum of squares (RSS) were used to describe the accuracy of multiple linear regression models. Results showed that mean SOC concentration and storage decreased significantly with depth under unshaded coffee systems. Mean SOC concentration and storage were higher in shaded than unshaded coffee systems at 20–40 cm depth. The correlations between SOC concentration and ρb, pH and N were significant. Evidence from the multiple linear regression model showed that soil bulk density (ρb), soil pH, total nitrogen of soil (N) and climatic variables had the greatest impact on soil carbon storage in the coffee system.


Sign in / Sign up

Export Citation Format

Share Document