scholarly journals Data processing workflows from low-cost digital survey to various applications: three case studies of Chinese historic architecture

Author(s):  
Z. Sun ◽  
Y. K. Cao

The paper focuses on the versatility of data processing workflows ranging from BIM-based survey to structural analysis and reverse modeling. In China nowadays, a large number of historic architecture are in need of restoration, reinforcement and renovation. But the architects are not prepared for the conversion from the booming AEC industry to architectural preservation. As surveyors working with architects in such projects, we have to develop efficient low-cost digital survey workflow robust to various types of architecture, and to process the captured data for architects. Although laser scanning yields high accuracy in architectural heritage documentation and the workflow is quite straightforward, the cost and portability hinder it from being used in projects where budget and efficiency are of prime concern. We integrate Structure from Motion techniques with UAV and total station in data acquisition. The captured data is processed for various purposes illustrated with three case studies: the first one is as-built BIM for a historic building based on registered point clouds according to Ground Control Points; The second one concerns structural analysis for a damaged bridge using Finite Element Analysis software; The last one relates to parametric automated feature extraction from captured point clouds for reverse modeling and fabrication.

Author(s):  
L. Barazzetti ◽  
M. Previtali ◽  
F. Roncoroni

<p><strong>Abstract.</strong> This paper presents a strategy to measure verticality deviations (i.e. inclination) of tall chimneys. The method uses laser scanning point clouds acquired around the chimney to estimate vertical deviations with millimeter-level precision. Horizontal slices derived from the point cloud allows us to inspect the geometry of the chimney at different heights. Two methods able to estimate the center at different levels are illustrated and discussed. A first solution is a manual approach that uses traditional CAD software, in which circle fitting is manually carried out through point cloud slices. The second method is instead automatic and provides not only center coordinates, but also statistics to evaluate metric quality. Two case studies are used to explain the procedures for the digital survey and the measurement of vertical deviations: the chimney in the old slaughterhouse of Piacenza (Italy), and the chimney in Leonardo Campus at Politecnico di Milano (Italy).</p>


2021 ◽  
Vol 13 (8) ◽  
pp. 1584
Author(s):  
Pedro Martín-Lerones ◽  
David Olmedo ◽  
Ana López-Vidal ◽  
Jaime Gómez-García-Bermejo ◽  
Eduardo Zalama

As the basis for analysis and management of heritage assets, 3D laser scanning and photogrammetric 3D reconstruction have been probed as adequate techniques for point cloud data acquisition. The European Directive 2014/24/EU imposes BIM Level 2 for government centrally procured projects as a collaborative process of producing federated discipline-specific models. Although BIM software resources are intensified and increasingly growing, distinct specifications for heritage (H-BIM) are essential to driving particular processes and tools to efficiency shifting from point clouds to meaningful information ready to be exchanged using non-proprietary formats, such as Industry Foundation Classes (IFC). This paper details a procedure for processing enriched 3D point clouds into the REVIT software package due to its worldwide popularity and how closely it integrates with the BIM concept. The procedure will be additionally supported by a tailored plug-in to make high-quality 3D digital survey datasets usable together with 2D imaging, enhancing the capability to depict contextualized important graphical data to properly planning conservation actions. As a practical example, a 2D/3D enhanced combination is worked to accurately include into a BIM project, the length, orientation, and width of a big crack on the walls of the Castle of Torrelobatón (Spain) as a representative heritage building.


2019 ◽  
pp. 142-176
Author(s):  
Fabrizio Ivan Apollonio ◽  
Marco Gaiani ◽  
Zheng Sun

Building Information Modeling (BIM) has attracted wide interest in the field of documentation and conservation of Architectural Heritage (AH). Existing approaches focus on converting laser scanned point clouds to BIM objects, but laser scanning is usually limited to planar elements which are not the typical state of AH where free-form and double-curvature surfaces are common. We propose a method that combines low-cost automatic photogrammetric data acquisition techniques with parametric BIM objects founded on Architectural Treatises and a syntax allowing the transition from the archetype to the type. Point clouds with metric accuracy comparable to that from laser scanning allows accurate as-built model semantically integrated with the ideal model from parametric library. The deviation between as-built model and ideal model is evaluated to determine if feature extraction from point clouds is essential to improve the accuracy of as-built BIM.


2020 ◽  
Vol 10 (4) ◽  
pp. 1235 ◽  
Author(s):  
Massimiliano Pepe ◽  
Domenica Costantino ◽  
Alfredo Restuccia Garofalo

The aim of this work is to identify an efficient pipeline in order to build HBIM (heritage building information modelling) and create digital models to be used in structural analysis. To build accurate 3D models it is first necessary to perform a geomatics survey. This means performing a survey with active or passive sensors and, subsequently, accomplishing adequate post-processing of the data. In this way, it is possible to obtain a 3D point cloud of the structure under investigation. The next step, known as “scan-to-BIM (building information modelling)”, has led to the creation of an appropriate methodology that involved the use of Rhinoceros software and a few tools developed within this environment. Once the 3D model is obtained, the last step is the implementation of the structure in FEM (finite element method) and/or in HBIM software. In this paper, two case studies involving structures belonging to the cultural heritage (CH) environment are analysed: a historical church and a masonry bridge. In particular, for both case studies, the different phases were described involving the construction of the point cloud and, subsequently, the construction of a 3D model. This model is suitable both for structural analysis and for the parameterization of rheological and geometric information of each single element of the structure.


Author(s):  
L. Barazzetti ◽  
M. Previtali ◽  
F. Roncoroni

360 degree cameras capture the whole scene around a photographer in a single shot. Cheap 360 cameras are a new paradigm in photogrammetry. The camera can be pointed to any direction, and the large field of view reduces the number of photographs. This paper aims to show that accurate metric reconstructions can be achieved with affordable sensors (less than 300 euro). The camera used in this work is the Xiaomi Mijia Mi Sphere 360, which has a cost of about 300 USD (January 2018). Experiments demonstrate that millimeter-level accuracy can be obtained during the image orientation and surface reconstruction steps, in which the solution from 360&amp;deg; images was compared to check points measured with a total station and laser scanning point clouds. The paper will summarize some practical rules for image acquisition as well as the importance of ground control points to remove possible deformations of the network during bundle adjustment, especially for long sequences with unfavorable geometry. The generation of orthophotos from images having a 360&amp;deg; field of view (that captures the entire scene around the camera) is discussed. Finally, the paper illustrates some case studies where the use of a 360&amp;deg; camera could be a better choice than a project based on central perspective cameras. Basically, 360&amp;deg; cameras become very useful in the survey of long and narrow spaces, as well as interior areas like small rooms.


Author(s):  
C. Wang ◽  
Y. Dai ◽  
N. El-Sheimy ◽  
C. Wen ◽  
G. Retscher ◽  
...  

<p><strong>Abstract.</strong> This paper presents the design of the benchmark dataset on multisensory indoor mapping and position (MIMAP) which is sponsored by ISPRS scientific initiatives. The benchmark dataset including point clouds captured by indoor mobile laser scanning system (IMLS) in indoor environments of various complexity. The benchmark aims to stimulate and promote research in the following three fields: (1) SLAM-based indoor point cloud generation; (2) automated BIM feature extraction from point clouds, with an emphasis on the elements, such as floors, walls, ceilings, doors, windows, stairs, lamps, switches, air outlets, that are involved in building management and navigation tasks ; and (3) low-cost multisensory indoor positioning, focusing on the smartphone platform solution. MIMAP provides a common framework for the evaluation and comparison of LiDAR-based SLAM, BIM feature extraction, and smartphone indoor positioning methods.</p>


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5555 ◽  
Author(s):  
Ying Quan ◽  
Mingze Li ◽  
Zhen Zhen ◽  
Yuanshuo Hao ◽  
Bin Wang

Unmanned aerial vehicle (UAV) laser scanning, as an emerging form of near-ground light detection and ranging (LiDAR) remote sensing technology, is widely used for crown structure extraction due to its flexibility, convenience, and high point density. Herein, we evaluated the feasibility of using a low-cost UAV-LiDAR system to extract the fine-scale crown profile of Larix olgensis. Specifically, individual trees were isolated from LiDAR point clouds and then stratified from the point clouds of segmented individual tree crowns at 0.5 m intervals to obtain the width percentiles of each layer as profile points. Four equations (the parabola, Mitscherlich, power, and modified beta equations) were then applied to model the profiles of the entire and upper crown. The results showed that a region-based hierarchical cross-section analysis algorithm can successfully delineate 77.4% of the field-measured trees in high-density (>2400 trees/ha) forest stands. The crown profile generated with the 95th width percentile was adequate when compared with the predicted value of the existing field-based crown profile model (the Pearson correlation coefficient (ρ) was 0.864, root mean square error (RMSE) = 0.3354 m). The modified beta equation yielded slightly better results than the other equations for crown profile fitting and explained 85.9% of the variability in the crown radius for the entire crown and 87.8% of this variability for the upper crown. Compared with the cone and 3D convex hull volumes, the crown volumes predicted by our profile models had significantly smaller errors. The results revealed that the crown profile can be well described by using UAV-LiDAR, providing a novel way to obtain crown profile information without destructive sampling and showing the potential of the use of UAV-LiDAR in future forestry investigations and monitoring.


2019 ◽  
pp. 900-934
Author(s):  
Fabrizio Ivan Apollonio ◽  
Marco Gaiani ◽  
Zheng Sun

Building Information Modeling (BIM) has attracted wide interest in the field of documentation and conservation of Architectural Heritage (AH). Existing approaches focus on converting laser scanned point clouds to BIM objects, but laser scanning is usually limited to planar elements which are not the typical state of AH where free-form and double-curvature surfaces are common. We propose a method that combines low-cost automatic photogrammetric data acquisition techniques with parametric BIM objects founded on Architectural Treatises and a syntax allowing the transition from the archetype to the type. Point clouds with metric accuracy comparable to that from laser scanning allows accurate as-built model semantically integrated with the ideal model from parametric library. The deviation between as-built model and ideal model is evaluated to determine if feature extraction from point clouds is essential to improve the accuracy of as-built BIM.


Author(s):  
Fabrizio Ivan Apollonio ◽  
Marco Gaiani ◽  
Zheng Sun

Building Information Modeling (BIM) has attracted wide interest in the field of documentation and conservation of Architectural Heritage (AH). Existing approaches focus on converting laser scanned point clouds to BIM objects, but laser scanning is usually limited to planar elements which are not the typical state of AH where free-form and double-curvature surfaces are common. We propose a method that combines low-cost automatic photogrammetric data acquisition techniques with parametric BIM objects founded on Architectural Treatises and a syntax allowing the transition from the archetype to the type. Point clouds with metric accuracy comparable to that from laser scanning allows accurate as-built model semantically integrated with the ideal model from parametric library. The deviation between as-built model and ideal model is evaluated to determine if feature extraction from point clouds is essential to improve the accuracy of as-built BIM.


Author(s):  
A. Guarnieri ◽  
F. Fissore ◽  
A. Masiero ◽  
A. Di Donna ◽  
U. Coppa ◽  
...  

In the last decade advances in the fields of close-range photogrammetry, terrestrial laser scanning (TLS) and computer vision (CV) have enabled to collect different kind of information about a Cultural Heritage objects and to carry out highly accurate 3D models. Additionally, the integration between laser scanning technology and Finite Element Analysis (FEA) is gaining particular interest in recent years for structural analysis of built heritage, since the increasing computational capabilities allow to manipulate large datasets. In this note we illustrate the approach adopted for surveying, 3D modeling and structural analysis of Villa Revedin-Bolasco, a magnificent historical building located in the small walled town of Castelfranco Veneto, in northern Italy. In 2012 CIRGEO was charged by the University of Padova to carry out a survey of the Villa and Park, as preliminary step for subsequent restoration works. The inner geometry of the Villa was captured with two Leica Disto D3a BT hand-held laser meters, while the outer walls of the building were surveyed with a Leica C10 and a Faro Focus 3D 120 terrestrial laser scanners. Ancillary GNSS measurements were also collected for 3D laser model georeferencing. A solid model was then generated from the laser global point cloud in Rhinoceros software, and portion of it was used for simulation in a Finite Element Analysis (FEA). In the paper we discuss in detail all the steps and challenges addressed and solutions adopted concerning the survey, solid modeling and FEA from laser scanning data of the historical complex of Villa Revedin-Bolasco.


Sign in / Sign up

Export Citation Format

Share Document