scholarly journals An Improved Multi-Temporal Insar Method for Increasing Spatial Resolution of Surface Deformation Measurements

Author(s):  
T. Li ◽  
G. Liu ◽  
H. Jia ◽  
H. Lin ◽  
R. Zhang ◽  
...  
Vestnik MEI ◽  
2019 ◽  
Vol 2 (2) ◽  
pp. 101-108
Author(s):  
Anton Yu. Poroykov ◽  
◽  
Konstantin M. Lapitskiy ◽  

2014 ◽  
Vol 6 (4) ◽  
pp. 3349-3368 ◽  
Author(s):  
Tao Li ◽  
Guoxiang Liu ◽  
Hui Lin ◽  
Hongguo Jia ◽  
Rui Zhang ◽  
...  

2018 ◽  
Vol 156 (1) ◽  
pp. 24-36 ◽  
Author(s):  
Y. Palchowdhuri ◽  
R. Valcarce-Diñeiro ◽  
P. King ◽  
M. Sanabria-Soto

AbstractRemote sensing (RS) offers an efficient and reliable means to map features on Earth. Crop type mapping using RS at various temporal and spatial resolutions plays an important role spanning from environmental to economical. The main objective of the current study was to evaluate the significance of optical data in a multi-temporal crop type classification-based on very high spatial resolution and high spatial resolution imagery. With this aim, three images from WorldView-3 and Sentinel-2 were acquired over Coalville (UK) between April and July 2016. Three vegetation indices (VIs); the normalized difference vegetation index, the green normalized difference vegetation index and soil adjusted vegetation index were generated using red, green and near-infrared spectral bands; then a supervised classification was performed using ground reference data collected from field surveys, Random forest (RF) and decision tree (DT) classification algorithms. Accuracy assessment was undertaken by comparing the classified output with the reference data. An overall accuracy of 91% and κ coefficient of 0·90 were estimated using the combination of RF and DT classification algorithms. Therefore, it can be concluded that integrating very high- and high-resolution imagery with different VIs can be implemented effectively to produce large-scale crop maps even with a limited temporal-dataset.


2008 ◽  
Vol 112 (6) ◽  
pp. 2729-2740 ◽  
Author(s):  
Michael A. Wulder ◽  
Joanne C. White ◽  
Nicholas C. Coops ◽  
Christopher R. Butson

Author(s):  
C. W. Han ◽  
S. Cho ◽  
B. Han

Moire´ interferometry is a full-field optical method that has high displacement, strain and spatial resolution. The method has been used extensively for deformation analyses in the various fields of mechanics. Special considerations arise when deformation measurements of tiny specimens or tiny regions of larger specimens are sought. The relative displacements within a small field of view will be small (even if the strains are not small), so the number of morie´ fringes might not be enough for an accurate analysis.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Victor A. Alegana ◽  
Peter M. Atkinson ◽  
Christopher Lourenço ◽  
Nick W. Ruktanonchai ◽  
Claudio Bosco ◽  
...  

Abstract The long-term goal of the global effort to tackle malaria is national and regional elimination and eventually eradication. Fine scale multi-temporal mapping in low malaria transmission settings remains a challenge and the World Health Organisation propose use of surveillance in elimination settings. Here, we show how malaria incidence can be modelled at a fine spatial and temporal resolution from health facility data to help focus surveillance and control to population not attending health facilities. Using Namibia as a case study, we predicted the incidence of malaria, via a Bayesian spatio-temporal model, at a fine spatial resolution from parasitologically confirmed malaria cases and incorporated metrics on healthcare use as well as measures of uncertainty associated with incidence predictions. We then combined the incidence estimates with population maps to estimate clinical burdens and show the benefits of such mapping to identifying areas and seasons that can be targeted for improved surveillance and interventions. Fine spatial resolution maps produced using this approach were then used to target resources to specific local populations, and to specific months of the season. This remote targeting can be especially effective where the population distribution is sparse and further surveillance can be limited to specific local areas.


Sign in / Sign up

Export Citation Format

Share Document