scholarly journals Climate Absolute Radiance and Refractivity Observatory (CLARREO)

Author(s):  
J. Leckey

The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a mission, led and developed by NASA, that will measure a variety of climate variables with an unprecedented accuracy to quantify and attribute climate change. CLARREO consists of three separate instruments: an infrared (IR) spectrometer, a reflected solar (RS) spectrometer, and a radio occultation (RO) instrument. The mission will contain orbiting radiometers with sufficient accuracy, including on orbit verification, to calibrate other space-based instrumentation, increasing their respective accuracy by as much as an order of magnitude. The IR spectrometer is a Fourier Transform spectrometer (FTS) working in the 5 to 50 μm wavelength region with a goal of 0.1 K (<i>k</i> = 3) accuracy. The FTS will achieve this accuracy using phase change cells to verify thermistor accuracy and heated halos to verify blackbody emissivity, both on orbit. The RS spectrometer will measure the reflectance of the atmosphere in the 0.32 to 2.3 μm wavelength region with an accuracy of 0.3% (<i>k</i> = 2). The status of the instrumentation packages and potential mission options will be presented.

Author(s):  
J. Leckey

In a world of changing climate, political uncertainty, and ever-changing budgets, the benefit of measurements traceable to SI standards increases by the day. To truly resolve climate change trends on a decadal time scale, on-orbit measurements need to be referenced to something that is both absolute and unchanging. One such mission is the Climate Absolute Radiance and Refractivity Observatory (CLARREO) that will measure a variety of climate variables with an unprecedented accuracy to definitively quantify climate change. In the CLARREO mission, we will utilize phase change cells in which a material is melted to calibrate the temperature of a blackbody that can then be observed by a spectrometer. A material’s melting point is an unchanging physical constant that, through a series of transfers, can ultimately calibrate a spectrometer on an absolute scale. CLARREO consists of two primary instruments: an infrared (IR) spectrometer and a reflected solar (RS) spectrometer. The mission will contain orbiting radiometers with sufficient accuracy to calibrate other space-based instrumentation and thus transferring the absolute traceability. The status of various mission options will be presented.


2011 ◽  
Vol 64 (S1) ◽  
pp. S103-S111 ◽  
Author(s):  
Xiaohua Xu ◽  
Jia Luo ◽  
Kefei Zhang

The status of the tropopause has impact on weather phenomena and climate change occurring in the atmosphere of the Earth. The investigation of structure and variation of the tropopause plays a significant role in an in-depth understanding of water vapour exchange, mass and chemical materials across the tropopause, and their impacts on climate change and ecological environment. With the advantages of high vertical resolution, global coverage, unbiased instrumentation, and long-term stability, GPS Radio Occultation (RO) data is ideal for the monitoring of tropopause structure. In this research, GPS RO data from the two missions, CHAMP and COSMIC, were used to assess and analyse the temporal and spatial variations in tropopause heights and temperature over China. The consistency of the precision of the GPS temperature profiles derived from the two missions were also statistically validated. The two types of tropopause, i.e. the Lapse Rate Tropopause (LRT) and the Cold Point Tropopause (CPT), were determined from the GPS RO temperature profiles, and the trend of the variations in tropopause heights and temperatures of the two types of tropopause were compared and analysed.


2019 ◽  
Vol 70 (8) ◽  
pp. 2747-2752
Author(s):  
Constantin Marutoiu ◽  
Ioan Bratu ◽  
Mircea Gelu Buta ◽  
Olivia Florena Nemes ◽  
Sergiu Petru Timbus(Monk Siluan) ◽  
...  

A two-sided wooden icon from a monastery in Transylvania was submitted for multidisciplinary investigations involving X-Ray Fluorescence, Radiographic Photographyand Fourier Transform Infrared Spectroscopy. The most important part of the icon is St. Nicholas wooden icon, painted over forty years ago. The spectroscopic methods used revealed the painting materials composition, the status of the wooden stage, and the presence of resins as varnish (Fourier Transform Infrared Spectroscopy). On one side, the St Nicholasicon was painted over an old icon, St. Arch. Michael, which was evidenced by X-Ray Photography. The obtained data can serve for the preservation and the restoration of these wooden icons.


Author(s):  
James ROSE

ABSTRACT Within the context of the work and achievements of James Croll, this paper reviews the records of direct observations of glacial landforms and sediments made by Charles Lyell, Archibald and James Geikie and James Croll himself, in order to evaluate their contributions to the sciences of glacial geology and Quaternary environmental change. The paper outlines the social and physical environment of Croll's youth and contrasts this with the status and experiences of Lyell and the Geikies. It also outlines the character and role of the ‘Glasgow School’ of geologists, who stimulated Croll's interest into the causes of climate change and directed his focus to the glacial and ‘interglacial’ deposits of central Scotland. Contributions are outlined in chronological order, drawing attention to: (i) Lyell's high-quality observations and interpretations of glacial features in Glen Clova and Strathmore and his subsequent rejection of the glacial theory in favour of processes attributed to floating icebergs; (ii) the significant impact of Archibald Geikie's 1863 paper on the ‘glacial drift of Scotland’, which firmly established the land-ice theory; (iii) the fact that, despite James Croll's inherent dislike of geology and fieldwork, he provided high-quality descriptions and interpretations of the landforms and sediments of central Scotland in order to test his theory of climate change; and (iv) the great communication skills of James Geikie, enhanced by contacts and evidence from around the world. It is concluded that whilst direct observations of glacial landforms and sediments were critical to the long-term development of the study of glaciation, the acceptance of this theory was dependent also upon the skills, personality and status of the Geikies and Croll, who developed and promoted the concepts. Sadly, the subsequent rejection of the land-ice concept by Lyell resulted in the same factors challenging the acceptance of the glacial theory.


Sign in / Sign up

Export Citation Format

Share Document