scholarly journals Kinematics decoupling analysis of a hyper-redundant manipulator driven by cables

2021 ◽  
Vol 12 (2) ◽  
pp. 1017-1026
Author(s):  
Lei Zhang ◽  
Guangyao Ouyang ◽  
Zhaocai Du

Abstract. The mapping relationship between the driving space and the workspace is essential for the precise control of a cable-driven hyper-redundant robot. For a hyper-redundant robot driven by cables, the relationships between the driving space and the joint space and between the joint space and the workspace were studied. A joint-decoupling kinematics analysis method was proposed and a kinematic analysis was presented. Based on the analysis of the coupling effect between the cable-driving space and the joint space, a decoupling analysis of the whole cable-driving space and joint space was conducted to eliminate the coupling effect between the joints, and the mapping relationship between the driving cables and the joint angles was obtained. Given the initial and target orientations of the hyper-redundant robot, the variation law for each joint angle was obtained using quintic polynomial trajectory planning and the pseudo-inverse Jacobian matrix, and then the driving cable variation law could be solved. Based on the results, the joint angle changes and the workspace trajectories were solved in turn. By comparing with the initial trajectory, the simulation results verified the appropriateness of the decoupling analysis.

Robotica ◽  
2002 ◽  
Vol 20 (3) ◽  
pp. 269-280 ◽  
Author(s):  
Shigang Yue ◽  
Dominik Henrich ◽  
W. L. Xu ◽  
S. K. Tso

The paper focuses on the problem of point-to-point trajectory planning for flexible redundant robot manipulators (FRM) in joint space. Compared with irredundant flexible manipulators, a FRM possesses additional possibilities during point-to-point trajectory planning due to its kinematics redundancy. A trajectory planning method to minimize vibration and/or executing time of a point-to-point motion is presented for FRMs based on Genetic Algorithms (GAs). Kinematics redundancy is integrated into the presented method as planning variables. Quadrinomial and quintic polynomial are used to describe the segments that connect the initial, intermediate, and final points in joint space. The trajectory planning of FRM is formulated as a problem of optimization with constraints. A planar FRM with three flexible links is used in simulation. Case studies show that the method is applicable.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Long Huang ◽  
Bei Liu ◽  
Lairong Yin ◽  
Peng Zeng ◽  
Yuanhan Yang

In most of the prior designs of conventional cable-driven hyper-redundant robots, the multiple degree-of-freedom (DOF) bending motion usually has bending coupling effects. It means that the rotation output of each DOF is controlled by multiple pairs of cable inputs. The bending coupling effect will increase the complexity of the driving mechanism and the risk of slack in the driving cables. To address these problems, a novel 2-DOF decoupled joint is proposed by adjusting the axes distribution of the universal joints. Based on the decoupled joint, a 4-DOF hyper-redundant robot with two segments is developed. The kinematic model of the robot is established, and the workspace is analyzed. To simplify the driving mechanism, a kinematic fitting approach is presented for both proximal and distal segments and the mapping between the actuator space and the joint space is significantly simplified. It also leads to the simplification of the driving mechanism and the control system. Furthermore, the cable-driven hyper-redundant robot prototype with multiple decoupled joints is established. The experiments on the robot prototype verify the advantages of the design.


Author(s):  
Yue Shigang

Abstract The significant effect of initial configurations of flexible redundant robot manipulators is analyzed in the paper. It is found that the endpoint vibrations of a flexible redundant manipulator are quite different while performing the same endpoint trajectory starting from different initial configurations. Thus an optimal initial configuration with lower vibrations is found based on analysis before the manipulator starts to move. Only small and acceptable vibrations can be stimulated if the flexible redundant manipulator starts to move from the optimal configuration. Lots of computer time can be saved compared with optimal joint planning method. The method can be used in real-time control.


1994 ◽  
Vol 116 (1) ◽  
pp. 11-16 ◽  
Author(s):  
Y. S. Chung ◽  
M. Griffis ◽  
J. Duffy

This paper presents a novel, practical, and theoretically sound kinematic control strategy for serial redundant manipulators. This strategy yields repeatability in the joint space of a serial redundant manipulator whose end effector undergoes some general cyclic type motion. This is accomplished by deriving a new inverse kinematic equation that is based on springs being theoretically or conceptually located in the joints of the manipulator (torsional springs for revolute joints, translational springs for prismatic joints). Previous researchers have also derived an inverse kinematic equation for serial redundant manipulators. However, to the authors’ knowledge, the new strategy is the first to include the free angles of torsional springs and the free lengths of translational springs. This is important because it ensures the repeatability in the joint space of a serial redundant manipulator whose end effector undergoes a cyclic type motion. Numerical verification for repeatability is done in terms of Lie bracket condition. Choices for the free angle and torsional stiffness of a joint (or the free length and translational stiffness) are made based upon the mechanical limits of the joint.


2008 ◽  
Vol 18 (07) ◽  
pp. 1939-1955 ◽  
Author(s):  
YUHAI WU ◽  
YONGXI GAO ◽  
MAOAN HAN

This paper is concerned with the number and distributions of limit cycles in a Z2-equivariant quintic planar vector field. By applying qualitative analysis method of differential equation, we find that 28 limit cycles with four different configurations appear in this special planar polynomial system. It is concluded that H(5) ≥ 28 = 52+ 3, where H(5) is the Hilbert number for quintic polynomial systems. The results obtained are useful to the study of the second part of 16th Hilbert problem.


Robotica ◽  
2000 ◽  
Vol 18 (5) ◽  
pp. 513-518 ◽  
Author(s):  
Bojan Nemec ◽  
Leon Zlajpah

Null space velocity control is essential for achieving good behaviour of a redundant manipulator. Using the dynamically consistent pseudo-inverse, the task and null space motion and forces are decoupled. The paper presents a globally stable null space velocity controller and the gradient projection technique in conjunction with the dynamically consistent pseudo-inverse. The physical meaning and influence of the compensation terms in null the space velocity controller are explained. The performance of the proposed null space controller is tested on 4. d.o.f planar redundant manipulator interacting with the environment.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6580
Author(s):  
Yixing Wang ◽  
Qianming Xu ◽  
Josep M. Guerrero

Due to the internal dynamics of the modular multilevel converter (MMC), the coupling between the positive and negative sequences in impedance, which is defined as frequency coupling, inherently exists in MMC. Ignoring the frequency coupling of the MMC impedance model may lead to inaccurate stability assessment, and thus the multi-input multi-output (MIMO) impedance model has been developed to consider the frequency coupling effect. However, the generalized Nyquist criterion (GNC), which is used for the stability analysis of an MIMO model, is more complicated than the stability analysis method applied on single-input-single-output (SISO) models. Meanwhile, it is not always the case that the SISO model fails in the stability assessment. Therefore, the conditions when the MIMO impedance model needs to be considered in the stability analysis of an MMC system should be analyzed. This paper quantitatively analyzes the effect of frequency coupling on the stability analysis of grid-connected MMC, and clarifies the frequency range and grid conditions that the coupling effect required to be considered in the stability analysis. Based on the quantitative relations between the frequency coupling and the stability analysis of the grid-connected MMC system, a simple and accurate stability analysis method for the grid-connected MMC system is proposed, where the MIMO impedance model is applied when the frequency coupling has a significant effect and the SISO impedance model is used if the frequency coupling is insignificant.


2015 ◽  
Vol 12 (1) ◽  
pp. 81-98
Author(s):  
Petar Petrovic ◽  
Nikola Lukic ◽  
Ivan Danilov

This paper presents theoretical and experimental aspects of Jacobian nullspace use in kinematically redundant robots for achieving kinetostatically consistent control of their compliant behavior. When the stiffness of the robot endpoint is dominantly influenced by the compliance of the robot joints, generalized stiffness matrix can be mapped into joint space using appropriate congruent transformation. Actuation stiffness matrix achieved by this transformation is generally nondiagonal. Off-diagonal elements of the actuation matrix can be generated by redundant actuation only (polyarticular actuators), but such kind of actuation is very difficult to realize practically in technical systems. The approach of solving this problem which is proposed in this paper is based on the use of kinematic redundancy and nullspace of the Jacobian matrix. Evaluation of the developed analytical model was done numerically by a minimal redundant robot with one redundant d.o.f. and experimentally by a 7 d.o.f. Yaskawa SIA 10F robot arm.


2021 ◽  
Vol 11 (20) ◽  
pp. 9438
Author(s):  
Jianwei Zhao ◽  
Tao Han ◽  
Xiaofei Ma ◽  
Wen Ma ◽  
Chengxiang Liu ◽  
...  

To address the problems of mismatch, poor flexibility and low accuracy of ordinary manipulators in the complex special deflagration work process, this paper proposes a new five-degree-of-freedom (5-DOF) folding deflagration manipulator. Firstly, the overall structure of the explosion-expulsion manipulator is introduced. The redundant degrees of freedom are formed by the parallel joint axes of the shoulder joint, elbow joint and wrist pitching joint, which increase the flexibility of the mechanism. Aiming at a complex system with multiple degrees of freedom and strong coupling of the manipulator, the virtual joint is introduced, the corresponding forward kinematics model is established by D–H method, and the inverse kinematics solution of the manipulator is derived by analytical method. In the MATLAB platform, the workspace of the manipulator is analyzed by Monte Carlo pseudo-random number method. The quintic polynomial interpolation method is used to simulate the deflagration task in joint space. Finally, the actual prototype experiment is carried out using the data obtained by simulation. The trajectory planning using the quintic polynomial interpolation method can ensure the smooth movement of the manipulator and high accuracy of operation. Furthermore, the trajectory is basically consistent with the simulation trajectory, which can realize the work requirements of putting the object into the explosion-proof tank. The new 5-DOF folding deflagration manipulator designed in this paper has stable motion and strong robustness, which can be used for deflagration during the COVID-19 epidemic.


Sign in / Sign up

Export Citation Format

Share Document