scholarly journals Bayesian hierarchical modelling of North Atlantic windiness

2013 ◽  
Vol 13 (3) ◽  
pp. 545-557 ◽  
Author(s):  
E. Vanem ◽  
O. N. Breivik

Abstract. Extreme weather conditions represent serious natural hazards to ship operations and may be the direct cause or contributing factor to maritime accidents. Such severe environmental conditions can be taken into account in ship design and operational windows can be defined that limits hazardous operations to less extreme conditions. Nevertheless, possible changes in the statistics of extreme weather conditions, possibly due to anthropogenic climate change, represent an additional hazard to ship operations that is less straightforward to account for in a consistent way. Obviously, there are large uncertainties as to how future climate change will affect the extreme weather conditions at sea and there is a need for stochastic models that can describe the variability in both space and time at various scales of the environmental conditions. Previously, Bayesian hierarchical space-time models have been developed to describe the variability and complex dependence structures of significant wave height in space and time. These models were found to perform reasonably well and provided some interesting results, in particular, pertaining to long-term trends in the wave climate. In this paper, a similar framework is applied to oceanic windiness and the spatial and temporal variability of the 10-m wind speed over an area in the North Atlantic ocean is investigated. When the results from the model for North Atlantic windiness is compared to the results for significant wave height over the same area, it is interesting to observe that whereas an increasing trend in significant wave height was identified, no statistically significant long-term trend was estimated in windiness. This may indicate that the increase in significant wave height is not due to an increase in locally generated wind waves, but rather to increased swell. This observation is also consistent with studies that have suggested a poleward shift of the main storm tracks.

1996 ◽  
Vol 118 (4) ◽  
pp. 284-291 ◽  
Author(s):  
C. Guedes Soares ◽  
A. C. Henriques

This work examines some aspects involved in the estimation of the parameters of the probability distribution of significant wave height, in particular the homogeneity of the data sets and the statistical methods of fitting a distribution to data. More homogeneous data sets are organized by collecting the data on a monthly basis and by separating the simple sea states from the combined ones. A three-parameter Weibull distribution is fitted to the data. The parameters of the fitted distribution are estimated by the methods of maximum likelihood, of regression, and of the moments. The uncertainty involved in estimating the probability distribution with the three methods is compared with the one that results from using more homogeneous data sets, and it is concluded that the uncertainty involved in the fitting procedure can be more significant unless the method of moments is not considered.


2020 ◽  
Vol 8 (12) ◽  
pp. 1015
Author(s):  
Alicia Takbash ◽  
Ian R. Young

A non-stationary extreme value analysis of 41 years (1979–2019) of global ERA5 (European Centre for Medium-Range Weather Forecasts Reanalysis) significant wave height data is undertaken to investigate trends in the values of 100-year significant wave height, Hs100. The analysis shows that there has been a statistically significant increase in the value of Hs100 over large regions of the Southern Hemisphere. There have also been smaller decreases in Hs100 in the Northern Hemisphere, although the related trends are generally not statistically significant. The increases in the Southern Hemisphere are a result of an increase in either the frequency or intensity of winter storms, particularly in the Southern Ocean.


1978 ◽  
Vol 1 (16) ◽  
pp. 2 ◽  
Author(s):  
Michel K. Ochi

This paper discusses the statistical properties of long-term ocean and coastal waves derived from analysis of available data. It was found from the results of the analysis that the statistical properties of wave height and period obey the bi-variate log-normal probability law. The method to determine the confidence domain for a specified confidence coefficient is presented so that reliable information in severe seas where data are always sparse can be obtained from a contingency table. Estimation of the extreme significant wave height expected in the long-term is also discussed.


Author(s):  
Anne Karin Magnusson ◽  
Karsten Trulsen ◽  
Ole Johan Aarnes ◽  
Elzbieta M. Bitner-Gregersen ◽  
Mika P. Malila

Abstract On November 30, 2018, our attention was caught when analyzing wave profile time series measured by a platform mounted wave sensor (a SAAB REX radar) at Ekofisk, central North Sea. The 20-minute time series had not only one, but three consecutive waves with individual heights that all were more than twice the significant wave height, the two last of them being almost equally high with a factor 2.35 to the significant wave height of 4m (from 4σ(η), over 20 minutes). Counting three rogue waves in one sequence seems to be very rare. In this study we analyze how the shape is evolving in space and time using linear and non-linear propagation methods developed by Mark Donelan [1,2] and Karsten Trulsen [3,4]. Weather conditions and characteristics of the sea state with the ‘Three Sisters’ (named the “Justine Three Sisters”) are presented. It is found that the Three Sisters occurred in a crossing sea condition, with wind sea and swell coming from directions 60 degrees apart, with about same frequency, but very different energy.


2006 ◽  
Vol 19 (21) ◽  
pp. 5667-5685 ◽  
Author(s):  
Sergey K. Gulev ◽  
Vika Grigorieva

Abstract This paper analyses secular changes and interannual variability in the wind wave, swell, and significant wave height (SWH) characteristics over the North Atlantic and North Pacific on the basis of wind wave climatology derived from the visual wave observations of voluntary observing ship (VOS) officers. These data are available from the International Comprehensive Ocean–Atmosphere Data Set (ICOADS) collection of surface meteorological observations for 1958–2002, but require much more complicated preprocessing than standard meteorological variables such as sea level pressure, temperature, and wind. Visual VOS data allow for separate analysis of changes in wind sea and swell, as well as in significant wave height, which has been derived from wind sea and swell estimates. In both North Atlantic and North Pacific midlatitudes winter significant wave height shows a secular increase from 10 to 40 cm decade−1 during the last 45 yr. However, in the North Atlantic the patterns of trend changes for wind sea and swell are quite different from each other, showing opposite signs of changes in the northeast Atlantic. Trend patterns of wind sea, swell, and SWH in the North Pacific are more consistent with each other. Qualitatively the same conclusions hold for the analysis of interannual variability whose leading modes demonstrate noticeable differences for wind sea and swell. Statistical analysis shows that variability in wind sea is closely associated with the local wind speed, while swell changes can be driven by the variations in the cyclone counts, implying the importance of forcing frequency for the resulting changes in significant wave height. This mechanism of differences in variability patterns of wind sea and swell is likely more realistic than the northeastward propagation of swells from the regions from which the wind sea signal originates.


2015 ◽  
Vol 12 (6) ◽  
pp. 2955-3001
Author(s):  
H. Cannaby ◽  
M. D. Palmer ◽  
T. Howard ◽  
L. Bricheno ◽  
D. Calvert ◽  
...  

Abstract. Singapore is an island state with considerable population, industries, commerce and transport located in coastal areas at elevations less than 2 m making it vulnerable to sea-level rise. Mitigation against future inundation events requires a quantitative assessment of risk. To address this need, regional projections of changes in (i) long-term mean sea level and (ii) the frequency of extreme storm surge and wave events have been combined to explore potential changes to coastal flood risk over the 21st century. Local changes in time mean sea level were evaluated using the process-based climate model data and methods presented in the IPCC AR5. Regional surge and wave solutions extending from 1980 to 2100 were generated using ~ 12 km resolution surge (Nucleus for European Modelling of the Ocean – NEMO) and wave (WaveWatchIII) models. Ocean simulations were forced by output from a selection of four downscaled (~ 12 km resolution) atmospheric models, forced at the lateral boundaries by global climate model simulations generated for the IPCC AR5. Long-term trends in skew surge and significant wave height were then assessed using a generalised extreme value model, fit to the largest modelled events each year. An additional atmospheric solution downscaled from the ERA-Interim global reanalysis was used to force historical ocean model simulations extending from 1980–2010, enabling a quantitative assessment of model skill. Simulated historical sea surface height and significant wave height time series were compared to tide gauge data and satellite altimetry data respectively. Central estimates of the long-term mean sea level rise at Singapore by 2100 were projected to be 0.52 m (0.74 m) under the RCP 4.5 (8.5) scenarios respectively. Trends in surge and significant wave height 2 year return levels were found to be statistically insignificant and/or physically very small under the more severe RCP8.5 scenario. We conclude that changes to long-term mean sea level constitute the dominant signal of change to the projected inundation risk for Singapore during the 21st century. We note that the largest recorded surge residual in the Singapore Strait of ~ 84 cm lies between the central and upper estimates of sea level rise by 2100, highlighting the vulnerability of the region.


Sign in / Sign up

Export Citation Format

Share Document