scholarly journals Growth of a sinkhole in a seismic zone of the northern Apennines (Italy)

2018 ◽  
Vol 18 (9) ◽  
pp. 2355-2366 ◽  
Author(s):  
Alessandro La Rosa ◽  
Carolina Pagli ◽  
Giancarlo Molli ◽  
Francesco Casu ◽  
Claudio De Luca ◽  
...  

Abstract. Sinkhole collapse is a major hazard causing substantial social and economic losses. However, the surface deformations and sinkhole evolution are rarely recorded, as these sites are known mainly after a collapse, making the assessment of sinkhole-related hazard challenging. Furthermore, more than 40 % of the sinkholes of Italy are in seismically hazardous zones; it remains unclear whether seismicity may trigger sinkhole collapse. Here we use a multidisciplinary data set of InSAR, surface mapping and historical records of sinkhole activity to show that the Prà di Lama lake is a long-lived sinkhole that was formed in an active fault zone and grew through several events of unrest characterized by episodic subsidence and lake-level changes. Moreover, InSAR shows that continuous aseismic subsidence at rates of up to 7.1 mm yr−1 occurred during 2003–2008, between events of unrest. Earthquakes on the major faults near the sinkhole do not trigger sinkhole activity but low-magnitude earthquakes at 4–12 km depth occurred during sinkhole unrest in 1996 and 2016. We interpret our observations as evidence of seismic creep at depth causing fracturing and ultimately leading to the formation and growth of the Prà di Lama sinkhole.

2018 ◽  
Author(s):  
Alessandro La Rosa ◽  
Carolina Pagli ◽  
Giancarlo Molli ◽  
Francesco Casu ◽  
Claudio De Luca ◽  
...  

Abstract. Sinkhole collapse is a major hazard causing substantial social and economic losses. However, the surface deformations and sinkhole evolution are rarely recorded, as these sites are known mainly after a collapse, making the assessment of sinkholes-related hazard challenging. Furthermore, 40 % of the sinkholes of Italy are in seismically hazardous zones; it remains unclear whether seismicity may trigger sinkhole collapse. Here we use a multidisciplinary dataset of InSAR, surface mapping and historical records of sinkhole activity to show that the Prà di Lama lake is a long-lived sinkhole that was formed over a century ago and grew through several events of unrest characterized by episodic subsidence and lake-level changes. Moreover, InSAR shows that continuous aseismic subsidence at rates of up to 7.1 mm yr−1 occurred during 2001–2008, between events of unrest. Earthquakes on the major faults near the sinkhole are not a trigger to sinkhole activity but small-magnitude earthquakes at 4–12  km depth occurred during sinkhole unrest in 1996 and 2016. We interpret our observations as evidence of seismic creep in an active fault zone at depth causing fracturing and ultimately leading to the formation and growth of the Prà di Lama sinkhole.


Minerals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 385 ◽  
Author(s):  
Li-Wei Kuo ◽  
Jyh-Rou Huang ◽  
Jiann-Neng Fang ◽  
Jialiang Si ◽  
Haibing Li ◽  
...  

Graphitization of carbonaceous materials (CM) has been experimentally demonstrated as potential evidence of seismic slip within a fault gouge. The southern segment of the Longmenshan fault, a CM-rich-gouge fault, accommodated coseismic slip during the 2008 Mw 7.9 Wenchuan earthquake and potentially preserves a record of processes that occurred on the fault during the slip event. Here, we present a multi-technique characterization of CM within the active fault zone of the Longmenshan fault from the Wenchuan earthquake Fault Scientific Drilling-1. By contrast with field observations, graphite is pervasively and only distributed in the gouge zone, while heterogeneously crystallized CM are present in the surrounding breccia. The composite dataset that is presented, which includes the localized graphite layer along the 2008 Wenchuan earthquake principal slip zone, demonstrates that graphite is widely distributed within the active fault zone. The widespread occurrence of graphite, a seismic slip indicator, reveals that surface rupturing events commonly occur along the Longmenshan fault and are characteristic of this tectonically active region.


2015 ◽  
Vol 15 (10) ◽  
pp. 2347-2358 ◽  
Author(s):  
M. Maugeri ◽  
M. Brunetti ◽  
M. Garzoglio ◽  
C. Simolo

Abstract. Sicily, a major Mediterranean island, has experienced several exceptional precipitation episodes and floods during the last century, with serious damage to human life and the environment. Long-term, rational planning of urban development is indispensable to protect the population and to avoid huge economic losses in the future. This requires a thorough knowledge of the distributional features of extreme precipitation over the complex territory of Sicily. In this study, we perform a detailed investigation of observed 1 day precipitation extremes and their frequency distribution, based on a dense data set of high-quality, homogenized station records in 1921–2005. We estimate very high quantiles (return levels) corresponding to 10-, 50- and 100-year return periods, as predicted by a generalized extreme value distribution. Return level estimates are produced on a regular high-resolution grid (30 arcsec) using a variant of regional frequency analysis combined with regression techniques. Results clearly reflect the complexity of this region, and show the high vulnerability of its eastern and northeastern parts as those prone to the most intense and potentially damaging events.


Author(s):  
Wenfeng Zheng ◽  
Xiaolu Li ◽  
Lirong Yin ◽  
Zhengtong Yin ◽  
Bo Yang ◽  
...  

Due to the growing frequency of earthquakes, safeties of human lives and properties are facing serious threats. However, the research in the field of spatial-temporal distribution of earthquake is quite a few. In this paper, we use wavelet model to analyze the spatial-temporal distribution of earthquakes. Because the spatial-temporal distribution of earthquake activity is closely related to the distribution of the earthquake fault zone, we analyze large-scale earthquake clusters by selecting the Eurasia seismic belt and the surrounding region as the research area. From the perspective of the time domain, the results show that the seismic energy of the earthquake fault zone presences compact support or similar compact support distribution, suggesting that the seismic zone exists a relatively quiet period and active stage. This indicate that the seismic zone is periodical. The period of strong earthquakes above normal and less than normal is different by time changes. The cycles of earthquakes are different due to different regions and different geological and geographical environment.


Geosciences ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 451
Author(s):  
Nasim Mozafari ◽  
Çağlar Özkaymak ◽  
Dmitry Tikhomirov ◽  
Susan Ivy-Ochs ◽  
Vasily Alfimov ◽  
...  

This study reports on the cosmogenic 36Cl dating of two normal fault scarps in western Turkey, that of the Manastır and Mugırtepe faults, beyond existing historical records. These faults are elements of the western Manisa Fault Zone (MFZ) in the seismically active Gediz Graben. Our modeling revealed that the Manastır fault underwent at least two surface ruptures at 3.5 ± 0.9 ka and 2.0 ± 0.5 ka, with vertical displacements of 3.3 ± 0.5 m and 3.6 ± 0.5 m, respectively. An event at 6.5 ± 1.6 ka with a vertical displacement of 2.7 ± 0.4 m was reconstructed on the Mugırtepe fault. We attribute these earthquakes to the recurring MFZ ruptures, when also the investigated faults slipped. We calculated average slip rates of 1.9 and 0.3 mm yr−1 for the Manastır and Mugırtepe faults, respectively.


2021 ◽  
pp. 120633
Author(s):  
Alfons Berger ◽  
Daniel Egli ◽  
Christoph Glotzbach ◽  
Pierre G. Valla ◽  
Thomas Pettke ◽  
...  

Author(s):  
R. Van Dissen ◽  
J. Begg ◽  
Y. Awata

Approximately one year after the Great Hanshin (Kobe) Earthquake, two New Zealand geologists were invited to help with the Geological Survey of Japan's paleoearthquake/active fault studies in the Kobe/Awaji area. Trenches excavated across the Nojima fault, which ruptured during the Great Hanshin Earthquake, showed evidence of past surface rupture earthquakes, with the age of the penultimate earthquake estimated at approximately 2000 years. A trench across the Higashiura fault, located 3-4 km southeast of the Nojima fault, revealed at least two past surface rupture earthquakes. The timing of the older earthquakes is not yet known, but pottery fragments found in the trench constrain the timing of the most recent earthquake at less than 500-600 years. Historical records for this part of Japan suggest that within the last 700 years there has been only one regionally felt earthquake prior to the 1995 Great Hanshin Earthquake, and this was the AD 1596 Keicho Earthquake. It thus seems reasonable to suggest that the Higashiura fault was, at least in part, the source of the AD 1596 Keicho Earthquake.


Sign in / Sign up

Export Citation Format

Share Document