scholarly journals Assessing atmospheric moisture effects on heavy precipitation during HyMeX IOP16 using GPS nudging and dynamical downscaling

2020 ◽  
Vol 20 (10) ◽  
pp. 2753-2776
Author(s):  
Alberto Caldas-Alvarez ◽  
Samiro Khodayar

Abstract. Gaining insight into the interaction between atmospheric moisture and convection is determinant for improving the model representation of heavy precipitation, a weather phenomenon that causes casualties and monetary losses in the western Mediterranean region every year. Given the large variability of atmospheric moisture, an accurate representation of its distribution is expected to reduce the errors related to the representation of moist convective processes. In this study, we use a diagnostic approach to assess the sensitivity of convective precipitation and underlying mechanisms during a heavy precipitation event (Hydrological cycle in the Mediterranean eXperiment Intensive Observation Period; HyMeX IOP16) to variations of the atmospheric moisture spatio-temporal distribution. Sensitivity experiments are carried out by nudging a homogenized data set of the Global Positioning System-derived zenith total delay (GPS-ZTD) with sub-hourly temporal resolution (10 min) in 7 and 2.8 km simulations with the COnsortium for Small-scale MOdeling in CLimate Mode (COSMO-CLM) model over the western Mediterranean region. The analysis shows that (a) large atmospheric moisture amounts (integrated water vapour; IWV ∼ 40 mm) precede heavy precipitation in the affected areas. This occurs 12 h prior to initiation over southern France and 4 h over Sardinia, north-eastern Italy and Corsica, which is our main study area. (b) We found that the moisture is swept from the Atlantic by a westerly large-scale front associated with an upper level low on the one hand and evaporated from the Mediterranean Sea and north Africa on the other. The latter moisture transport occurs in the 1 to 4 km layer. (c) COSMO-CLM overestimated the atmospheric humidity over the study region (Corsica), and this was, to a good extent, corrected by the GPS-ZTD nudging. This reduced maximum precipitation (−49 % for 7 km and −16 % for 2.8 km) drastically, considerably improving the precipitation representation in the 7 km simulation. The convection-permitting simulation (2.8 km) without the GPS-ZTD nudging already did a good job in representing the precipitation amount. (d) The two processes that exerted the largest control on precipitation reduction were the decrease of atmospheric instability over Corsica (convective available potential energy; CAPE −35 %) and the drying of the lower free troposphere bringing additional dry air entrainment. In addition, the 7 km simulation showed a weakening of the represented low-pressure system and the associated cyclonic wind circulation. This ultimately reduced the intensity and number of convective updrafts represented over the island. These results highlight the large impact exerted by moisture corrections on precipitating convection and the chain of processes leading to it across scales.

2019 ◽  
Author(s):  
Alberto Caldas-Alvarez ◽  
Samiro Khodayar

Abstract. Gaining insight on the interaction between atmospheric moisture and convection is determinant to improve the model representation of heavy precipitation, a weather phenomenon that every year brings casualties and important monetary losses in the western Mediterranean region. Given the large variability of atmospheric moisture, an accurate representation of its distribution is expected to reduce the errors related to the representation of moist convective processes. In this study, we assess the sensitivity of precipitating convection and underlying mechanisms during a heavy precipitation event (HyMeX intensive observation period 16) to corrections of the atmospheric moisture spatio-temporal distribution. Sensitivity experiments are carried out by nudging a homogenised data set of GPS-derived Zenith Total Delays (GPS-ZTD) with sub-hourly frequency (10 minutes) in 7 km and 2.8 km simulations with the COSMO-CLM model over the western Mediterranean region. The analysis shows that (a) large atmospheric moisture amounts (Integrated Water Vapour ~ 40 mm) precede heavy precipitation at the affected areas. This occurs 12 h before initiation over southern France and 4 h over Sardinia, north eastern Italy and Corsica (our main study area). (b) We found that the moisture is transported on the one hand, swept by a westerly large-scale front associated with an upper-level low and on the other hand evaporated from the Mediterranean Sea and north Africa. The latter moisture transport occurs in the


Author(s):  
Alejandro Hermoso ◽  
Victor Homar ◽  
Arnau Amengual

AbstractThe Mediterranean region is frequently affected by heavy precipitation episodes and subsequent flash flooding. An exemplary case is the heavy precipitation episode that occurred in the regions of València, Murcia, and Almería (eastern Spain) on 12 and 13 September 2019. Observed rainfall amounts were close to 500 mm in 48 h, causing seven fatalities and estimated economical losses above 425 million EUR. This case exemplifies the challenging aspects of convective-scale forecasting in the Mediterranean region, with kilometer-resolution meteorological fields required over long forecast spans. Understanding the key mesoscale factors acting on the triggering, location, and intensity of the convective systems responsible for extreme accumulations is essential to gain insight into these episodes and contribute towards their accurate hydrometeorological forecasting. Mesoscale diagnosis suggests that local and distant orography, together with air-sea fluxes, were instrumental in developing convection and intensifying precipitation rate. Sensitivity experiments confirm the role of orography in organizing the cyclonic flow over the southeast part of the western Mediterranean, and also acting as a convection triggering mechanism. Furthermore, results highlight the role of latent heat flux from the Mediterranean Sea in enhancing convective instability at lower levels and moistening the environment. These moist feeding flows substantially contribute to increasing precipitation rates. Such high sensitivity to environmental moisture distribution naturally propagates to the sea surface temperature which, by means of sensible and latent heat flux exchanges, dominated the evolution of convective activity for the 12-13 September 2019 episode.


New Medit ◽  
2019 ◽  
Vol 18 (3) ◽  
pp. 109-111
Author(s):  
Ilaria Sisto ◽  
Maurizio Furst

Women as farmers, livestock keepers, fishers and forest dwellers play vital – often overlooked – roles in natural resources use and management in the Mediterranean region. Women’s exclusion from decision making bodies and unequal access to productive resources represent a missed opportunity in terms of sustainable management of available resources and economic development. Recent studies indicate that if men and women equally participate in the labour market, in the southern Mediterranean region the GDP could rise by 47% over the next decade, meaning an annual benefit from an economic impact of €490 billion (Woetzel et al., 2015). The Director General of the Food and Agriculture Organization of the United Nations (FAO), José Graziano da Silva, at the fourth Regional conference on women’s empowerment in the Euro-Mediterranean region stressed that rural women’s contributions and leadership is crucial to feed the Mediterranean region’s growing population and achieve sustainable food production: «By enabling rural women to reach their full potential, we can make food systems more inclusive, efficient and effective» (FAO 2018). In the region women sustain such food systems by gathering wild plants for food, medicinal use, fuelwood and other purposes, acting as herbalists, tending home gardens, selecting, managing and storing seeds, managing crops, trees and small livestock, domesticating plants, participating in small-scale fisheries and aquaculture, and storing, preserving and processing foods after harvesting. They have a unique knowledge about local biodiversity, which is often passed from generation to generation (FAO, 2019; World Bank, FAO and IFAD, 2009). Nevertheless, still too often women have less access than men to land and livestock, production inputs and services such as education, extension and credit, and are not represented in decision-making processes related to food and agriculture (Lehel 2018; World Bank, FAO and IFAD, 2009).


2015 ◽  
Author(s):  
Jasmine Ferrario ◽  
Agnese Marchini ◽  
Martina Marić ◽  
Dan Minchin ◽  
Anna Occhipinti-Ambrogi

The Pacific cheilostome bryozoan Celleporaria brunnea (Hincks, 1884), a non-indigenous species already known for the Mediterranean Sea, was recorded in 2013-2014 from nine Italian port localities (Genoa, Santa Margherita Ligure, La Spezia, Leghorn, Viareggio, Olbia, Porto Rotondo, Porto Torres and Castelsardo) in the North-western Mediterranean Sea; in 2014 it was also found for the first time in the Adriatic Sea, in the marina “Kornati”, Biograd na Moru (Croatia). In Italy, specimens of C. brunnea were found in 44 out of 105 samples (48% from harbour sites ad 52% from marinas). These data confirm and update the distribution of C. brunnea in the Mediterranean Sea, and provide evidence that recreational boating is a vector responsible for the successful spread of this species. Previous literature data have shown the existence of differences in orifice and interzooidal avicularia length and width among different localities of the invaded range of C. brunnea. Therefore, measurements of orifice and avicularia were assessed for respectively 30 zooids and 8 to 30 interzooidal avicularia for both Italian and Croatian localities, and compared with literature data, in order to verify the existence of differences in the populations of C. brunnea that could reflect the geographic pattern of its invasion range. Our data show high variability of orifice measures among and within localities: zooids with broader than long orifice coexisted with others displaying longer than broad orifice, or similar values for both length and width. The morphological variation of C. brunnea in these localities, and above all the large variability of samples within single localities or even within colonies poses questions on the reliability of such morphometric characters for inter and intraspecific evaluations.


2019 ◽  
Vol 19 (11) ◽  
pp. 7487-7506
Author(s):  
Keun-Ok Lee ◽  
Franziska Aemisegger ◽  
Stephan Pfahl ◽  
Cyrille Flamant ◽  
Jean-Lionel Lacour ◽  
...  

Abstract. The dynamical context and moisture transport pathways embedded in large-scale flow and associated with a heavy precipitation event (HPE) in southern Italy (SI) are investigated with the help of stable water isotopes (SWIs) based on a purely numerical framework. The event occurred during the Intensive Observation Period (IOP) 13 of the field campaign of the Hydrological Cycle in the Mediterranean Experiment (HyMeX) on 15 and 16 October 2012, and SI experienced intense rainfall of 62.4 mm over 27 h with two precipitation phases during this event. The first one (P1) was induced by convective precipitation ahead of a cold front, while the second one (P2) was mainly associated with precipitation induced by large-scale uplift. The moisture transport and processes responsible for the HPE are analysed using a simulation with the isotope-enabled regional numerical model COSMOiso. The simulation at a horizontal grid spacing of about 7 km over a large domain (about 4300 km ×3500 km) allows the isotopes signal to be distinguished due to local processes or large-scale advection. Backward trajectory analyses based on this simulation show that the air parcels arriving in SI during P1 originate from the North Atlantic and descend within an upper-level trough over the north-western Mediterranean. The descending air parcels reach elevations below 1 km over the sea and bring dry and isotopically depleted air (median δ18O ≤-25 ‰, water vapour mixing ratio q≤2 g kg−1) close to the surface, which induces strong surface evaporation. These air parcels are rapidly enriched in SWIs (δ18O ≥-14 ‰) and moistened (q≥8 g kg−1) over the Tyrrhenian Sea by taking up moisture from surface evaporation and potentially from evaporation of frontal precipitation. Thereafter, the SWI-enriched low-level air masses arriving upstream of SI are convectively pumped to higher altitudes, and the SWI-depleted moisture from higher levels is transported towards the surface within the downdrafts ahead of the cold front over SI, producing a large amount of convective precipitation in SI. Most of the moisture processes (i.e. evaporation, convective mixing) related to the HPE take place during the 18 h before P1 over SI. A period of 4 h later, during the second precipitation phase P2, the air parcels arriving over SI mainly originate from north Africa. The strong cyclonic flow around the eastward-moving upper-level trough induces the advection of a SWI-enriched African moisture plume towards SI and leads to large-scale uplift of the warm air mass along the cold front. This lifts moist and SWI-enriched air (median δ18O ≥-16 ‰, median q≥6 g kg−1) and leads to gradual rain out of the air parcels over Italy. Large-scale ascent in the warm sector ahead of the cold front takes place during the 72 h preceding P2 in SI. This work demonstrates how stable water isotopes can yield additional insights into the variety of thermodynamic mechanisms occurring at the mesoscale and synoptic scale during the formation of a HPE.


1905 ◽  
Vol 2 (10) ◽  
pp. 462-467 ◽  
Author(s):  
C. I. Forsyth Major

In a former publication I have dealt with the anatomy of Prolagus sardus (Wagn.), from the Sardinian and Corsican Pleistocene, in comparison with that of its Tertiary relatives. The following pages deal with the geographical distribution of Pleistocene Prolagus and its bearing on more general questions.When Ouvier discovered, in the ossiferous breccia of Corsica, remains of a ‘Lagomys,’ which he believed to be closely related to the Siberian Lagomys alpinus, he also suggested other analogies between the faunas of the two regions—Siberia and Corsica (as well as Sardinia), and commented upon the supposed relationship between the insular Mouflon and the Siberian Argali. Similar views were expressed by B. Wagner.Pumpelly, Loeard, and Lortet sought to establish a connection between a supposed Corsioan ‘ice-age,’ as attested by the trace of ancient glaciers, and the former existence in the island of a supposed inhabitant of cold regions, the Lagomys corsicanus. Hensel had, however, shown before, in 1856, that the affinities of Lagomys sardus from the Sardinian bone breccia are not with the recent Lagomys (Ogotona), but with a Miocene type, for which he proposed the generic name Myolagus (antedated by Prolagus, Pormel). He was in consequence inclined to assume a Tertiary age for the breccias in which the Prolagus occurred (and, indeed, for the whole of the Mediterranean bone breccias). A similar view has again been brought forward of late years.I myself pointed out (1) that the Corsican Lagomys likewise belonged to the genus Prolagus, as indeed had already been suspected by Hensel from his inspection of Cuvier's figures; (2) that the Tertiary age of the Corsican and Sardinian breccias could not be upheld, above all, because the mollusca occurring in them, as Loeard bad shown to be the case in the ossiferous breccia of Toga, near Bastia, are still living in the neighbourhood.


2018 ◽  
Vol 46 (1) ◽  
pp. 261-289 ◽  
Author(s):  
Leigh Royden ◽  
Claudio Faccenna

The Late Cenozoic tectonic evolution of the Mediterranean region, which is sandwiched between the converging African and European continents, is dominated by the process of subduction orogeny. Subduction orogeny occurs where localized subduction, driven by negative slab buoyancy, is more rapid than the convergence rate of the bounding plates; it is commonly developed in zones of early or incomplete continental collision. Subduction orogens can be distinguished from collisional orogens on the basis of driving mechanism, tectonic setting, and geologic expression. Three distinct Late Cenozoic subduction orogens can be identified in the Mediterranean region, making up the Western Mediterranean (Apennine, external Betic, Maghebride, Rif), Central Mediterranean (Carpathian), and Eastern Mediterranean (southern Dinaride, external Hellenide, external Tauride) Arcs. The Late Cenozoic evolution of these orogens, described in this article, is best understood in light of the processes that govern subduction orogeny and depends strongly on the buoyancy of the locally subducting lithosphere; it is thus strongly related to paleogeography. Because the slow (4–10 mm/yr) convergence rate between Africa and Eurasia has preserved the early collisional environment, and associated tectonism, for tens of millions of years, the Mediterranean region provides an excellent opportunity to elucidate the dynamic and kinematic processes of subduction orogeny and to better understand how these processes operate in other orogenic systems.


2009 ◽  
Vol 137 (11) ◽  
pp. 3933-3959 ◽  
Author(s):  
Beatriz M. Funatsu ◽  
Chantal Claud ◽  
Jean-Pierre Chaboureau

Abstract A characterization of the large-scale environment associated with precipitating systems in the Mediterranean region, based mainly on NOAA-16 Advanced Microwave Sounding Unit (AMSU) observations from 2001 to 2007, is presented. Channels 5, 7, and 8 of AMSU-A are used to identify upper-level features, while a simple and tractable method, based on combinations of channels 3–5 of AMSU-B and insensitive to land–sea contrast, was used to identify precipitation. Rain occurrence is widespread over the Mediterranean in wintertime while reduced or short lived in the eastern part of the basin in summer. The location of convective precipitation shifts from mostly over land from April to August, to mostly over the sea from September to December. A composite analysis depicting large-scale conditions, for cases of either rain alone or extensive areas of deep convection, is performed for selected locations where the occurrence of intense rainfall was found to be important. In both cases, an upper-level trough is seen to the west of the target area, but for extreme rainfall the trough is narrower and has larger amplitude in all seasons. In general, these troughs are also deeper for extreme rainfall. Based on the European Centre for Medium-Range Weather Forecasts operational analyses, it was found that sea surface temperature anomalies composites for extreme rainfall are often about 1 K warmer, compared to nonconvective precipitation conditions, in the vicinity of the affected area, and the wind speed at 850 hPa is also stronger and usually coming from the sea.


2013 ◽  
Vol 13 (11) ◽  
pp. 29333-29373 ◽  
Author(s):  
A. Winschall ◽  
S. Pfahl ◽  
H. Sodemann ◽  
H. Wernli

Abstract. Moisture convergence from different sources is an important prerequisite for a heavy precipitation event. The contributions from different source regions can, however, hardly be quantified from observations, and their assessment based on model results is complex. Two conceptually different numerical methods are widely used for the quantification of moisture sources: Lagrangian approaches based on the analysis of humidity variations along backward trajectories and Eulerian methods based on the implementation of moisture tracers into a numerical model. In this study the moisture sources for a high-impact heavy precipitation event that affected eastern Europe in May 2010 are studied with both Eulerian and Lagrangian moisture source diagnostics. The precipitation event was connected to a cyclone that developed over northern Africa, moved over the Mediterranean towards eastern Europe and induced transport of moist air towards the Carpathian mountains. Heavy precipitation and major flooding occurred in Poland, the Czech Republic and Slovakia between 16 and 18 May 2010. The Lagrangian and Eulerian diagnostics consistently indicate a~wide spatial and temporal range of moisture sources contributing to the event. The most important source is local evapotranspiration from the European land surface, followed by moisture from the North Atlantic. Further relevant contributions come from tropical Western Africa (10–20° N). Contrary to expectations, the Mediterranean Sea contributes only about 10% to the precipitation event. A detailed analysis of exemplary trajectories corroborates the general consistency of the two approaches, and underlines their complementarity. The Lagrangian method allows for mapping out moisture source regions with computational efficiency, whereas the more elaborate Eulerian model requires predefined moisture sources, but includes also processes such as precipitation, evaporation and turbulent mixing. However, in the Eulerian model, uncertainty concerning the relative importance of remote versus local moisture sources arises from different options to parameterise moisture tagging at the surface. Ultimately a more sophisticated parameterisation scheme will be required to reduce this uncertainty.


Sign in / Sign up

Export Citation Format

Share Document