scholarly journals Comparison between the Large-Scale Environments of Moderate and Intense Precipitating Systems in the Mediterranean Region

2009 ◽  
Vol 137 (11) ◽  
pp. 3933-3959 ◽  
Author(s):  
Beatriz M. Funatsu ◽  
Chantal Claud ◽  
Jean-Pierre Chaboureau

Abstract A characterization of the large-scale environment associated with precipitating systems in the Mediterranean region, based mainly on NOAA-16 Advanced Microwave Sounding Unit (AMSU) observations from 2001 to 2007, is presented. Channels 5, 7, and 8 of AMSU-A are used to identify upper-level features, while a simple and tractable method, based on combinations of channels 3–5 of AMSU-B and insensitive to land–sea contrast, was used to identify precipitation. Rain occurrence is widespread over the Mediterranean in wintertime while reduced or short lived in the eastern part of the basin in summer. The location of convective precipitation shifts from mostly over land from April to August, to mostly over the sea from September to December. A composite analysis depicting large-scale conditions, for cases of either rain alone or extensive areas of deep convection, is performed for selected locations where the occurrence of intense rainfall was found to be important. In both cases, an upper-level trough is seen to the west of the target area, but for extreme rainfall the trough is narrower and has larger amplitude in all seasons. In general, these troughs are also deeper for extreme rainfall. Based on the European Centre for Medium-Range Weather Forecasts operational analyses, it was found that sea surface temperature anomalies composites for extreme rainfall are often about 1 K warmer, compared to nonconvective precipitation conditions, in the vicinity of the affected area, and the wind speed at 850 hPa is also stronger and usually coming from the sea.

2007 ◽  
Vol 12 ◽  
pp. 19-26 ◽  
Author(s):  
B. M. Funatsu ◽  
C. Claud ◽  
J.-P. Chaboureau

Abstract. Mediterranean storms and their associated upper level features are diagnosed here using Advanced Microwave Sounding Unit (AMSU) observations. AMSU-A channel 8 is used to identify upper-level intrusions of stratospheric air, which are often present upstream of heavy precipitating areas, while a combination of AMSU-B channels 3 and 5 is chosen to discriminate moderate to heavily precipitating areas. This precipitation detection method provides results that are in good agreement with TRMM rainfall product and independent ground-based precipitation data. These tools allow us to follow the concomitant evolution of two severe rainfall events in the Mediterranean region and associated upper-level features.


2019 ◽  
Vol 19 (11) ◽  
pp. 7487-7506
Author(s):  
Keun-Ok Lee ◽  
Franziska Aemisegger ◽  
Stephan Pfahl ◽  
Cyrille Flamant ◽  
Jean-Lionel Lacour ◽  
...  

Abstract. The dynamical context and moisture transport pathways embedded in large-scale flow and associated with a heavy precipitation event (HPE) in southern Italy (SI) are investigated with the help of stable water isotopes (SWIs) based on a purely numerical framework. The event occurred during the Intensive Observation Period (IOP) 13 of the field campaign of the Hydrological Cycle in the Mediterranean Experiment (HyMeX) on 15 and 16 October 2012, and SI experienced intense rainfall of 62.4 mm over 27 h with two precipitation phases during this event. The first one (P1) was induced by convective precipitation ahead of a cold front, while the second one (P2) was mainly associated with precipitation induced by large-scale uplift. The moisture transport and processes responsible for the HPE are analysed using a simulation with the isotope-enabled regional numerical model COSMOiso. The simulation at a horizontal grid spacing of about 7 km over a large domain (about 4300 km ×3500 km) allows the isotopes signal to be distinguished due to local processes or large-scale advection. Backward trajectory analyses based on this simulation show that the air parcels arriving in SI during P1 originate from the North Atlantic and descend within an upper-level trough over the north-western Mediterranean. The descending air parcels reach elevations below 1 km over the sea and bring dry and isotopically depleted air (median δ18O ≤-25 ‰, water vapour mixing ratio q≤2 g kg−1) close to the surface, which induces strong surface evaporation. These air parcels are rapidly enriched in SWIs (δ18O ≥-14 ‰) and moistened (q≥8 g kg−1) over the Tyrrhenian Sea by taking up moisture from surface evaporation and potentially from evaporation of frontal precipitation. Thereafter, the SWI-enriched low-level air masses arriving upstream of SI are convectively pumped to higher altitudes, and the SWI-depleted moisture from higher levels is transported towards the surface within the downdrafts ahead of the cold front over SI, producing a large amount of convective precipitation in SI. Most of the moisture processes (i.e. evaporation, convective mixing) related to the HPE take place during the 18 h before P1 over SI. A period of 4 h later, during the second precipitation phase P2, the air parcels arriving over SI mainly originate from north Africa. The strong cyclonic flow around the eastward-moving upper-level trough induces the advection of a SWI-enriched African moisture plume towards SI and leads to large-scale uplift of the warm air mass along the cold front. This lifts moist and SWI-enriched air (median δ18O ≥-16 ‰, median q≥6 g kg−1) and leads to gradual rain out of the air parcels over Italy. Large-scale ascent in the warm sector ahead of the cold front takes place during the 72 h preceding P2 in SI. This work demonstrates how stable water isotopes can yield additional insights into the variety of thermodynamic mechanisms occurring at the mesoscale and synoptic scale during the formation of a HPE.


2008 ◽  
Vol 136 (11) ◽  
pp. 4301-4319 ◽  
Author(s):  
Brandon Kerns ◽  
Kantave Greene ◽  
Edward Zipser

Abstract Using the 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40), vorticity maxima (VM) have been manually tracked and classified as developing and nondeveloping. The VM are identified on Hovmöller plots for June–October 1998–2001, within 0°–35°N, 140°–10°W. Over 600 low-level and midlevel VM are tracked. The ERA-40 VM track climatology compares favorably with previous knowledge about easterly waves. Some new results have also been found. The VM are not equivalent to easterly waves, so it is important to distinguish between the large-scale wave and the embedded VM. Unlike waves, individual VM leaving Africa generally do not survive to cross the entire Atlantic. Unlike waves, which can cross Central America, most individual east Pacific VM originate in the east Pacific. Genesis productivity is defined as the fraction of nontropical cyclone VM that eventually develop. It reaches 50% in the eastern North Pacific (EPAC) and 30% in the Atlantic, where there is geographical separation between the locations of maximum nondeveloping and pregenesis track density. There is a strong gradient in daily genesis potential (DGP) near 10°N, associated with weaker upper-level anticyclonic vorticity equatorward of 10°N. The maximum genesis productivity is obtained north of 10°N, where the upper-anticyclonic vorticity and DGP are higher. Finally, there is no obvious distinction in VM strength between developing VM prior to genesis and nondeveloping VM. A major factor is the minimum vorticity threshold for VM as opposed to cloud clusters.


2015 ◽  
Vol 47 (5-6) ◽  
pp. 1925-1941 ◽  
Author(s):  
Andrea Toreti ◽  
Paraskevi Giannakaki ◽  
Olivia Martius

2008 ◽  
Vol 17 ◽  
pp. 87-91 ◽  
Author(s):  
A. V. Mehta ◽  
S. Yang

Abstract. Climatological features of mesoscale rain activities over the Mediterranean region between 5° W–40° E and 28° N–48° N are examined using the Tropical Rainfall Measuring Mission (TRMM) 3B42 and 2A25 rain products. The 3B42 rainrates at 3-hourly, 0.25°×0.25° spatial resolution for the last 10 years (January 1998 to July 2007) are used to form and analyze the 5-day mean and monthly mean climatology of rainfall. Results show considerable regional and seasonal differences of rainfall over the Mediterranean Region. The maximum rainfall (3–5 mm day−1) occurs over the mountain regions of Europe, while the minimum rainfall is observed over North Africa (~0.5 mm day−1). The main rainy season over the Mediterranean Sea extends from October to March, with maximum rainfall occurring during November–December. Over the Mediterranean Sea, an average rainrate of ~1–2 mm day−1 is observed, but during the rainy season there is 20% larger rainfall over the western Mediterranean Sea than that over the eastern Mediterranean Sea. During the rainy season, mesoscale rain systems generally propagate from west to east and from north to south over the Mediterranean region, likely to be associated with Mediterranean cyclonic disturbances resulting from interactions among large-scale circulation, orography, and land-sea temperature contrast.


2021 ◽  
Author(s):  
Romain Escudier ◽  
Emanuela Clementi ◽  
Mohamed Omar ◽  
Andrea Cipollone ◽  
Jenny Pistoia ◽  
...  

<p>In order to be able to predict the future ocean climate and weather, it is crucial to understand what happened in the past and the mechanisms responsible for the ocean variability. This is particularly true in a complex area such as the Mediterranean Sea with diverse dynamics such as deep convection and thermohaline circulation or coastal hydrodynamics. To this end, effective tools are reanalyses or reconstructions of the past ocean state. </p><p>Here we present a new physical reanalysis of the Mediterranean Sea at high resolution, developed in the Copernicus Marine Environment Monitoring Service (CMEMS) framework. The hydrodynamic model is based on the Nucleus for European Modelling of the Ocean (NEMO) combined with a variational data assimilation scheme (OceanVar).</p><p>The model has a horizontal resolution of 1/24<strong>°</strong> and 141 vertical z* levels and provides daily and monthly 3D values of temperature, salinity, sea level and currents. Hourly ECMWF ERA-5 atmospheric fields force the model and daily boundary conditions in the Atlantic are taken from the global CMCC C-GLORS reanalysis. 39 rivers model the freshwater input to the basin plus the Dardanelles. The reanalysis covers 33-years, initialized from SeaDataNet climatology in January 1985, getting to a nominal state after a two-years spin-up and ending in 2019. In-situ data from CTD, ARGO floats and XBT are assimilated into the model in combination with satellite altimetry data.</p><p>This reanalysis has been validated and assessed through comparison to in-situ and satellite observations as well as literature climatologies. The results show an overall improvement of the skill and a better representation of the main dynamics of the region compared to the previous, lower resolution (1/16<strong>°</strong>) reanalysis. Temperature and salinity RMSE is decreased by respectively 12% and 20%. The deeper biases in salinity of the previous version are corrected and the new reanalysis present a better representation of the deep convection in the Gulf of Lion. Climate signals show continuous increase of the temperature due to climate change but also in salinity.</p><p>The new reanalysis will allow the study of physical processes at multi-scales, from the large scale to the transient small mesoscale structures.</p>


Sign in / Sign up

Export Citation Format

Share Document