scholarly journals Brief communication: Hurricane Dorian: automated near-real-time mapping of the unprecedented flooding on the Bahamas using SAR

Author(s):  
Diego Cerrai ◽  
Qing Yang ◽  
Xinyi Shen ◽  
Marika Koukoula ◽  
Emmanouil N. Anagnostou

Abstract. Lack of real-time, in situ data on the extent of flooding in many parts of the world can hinder efficient disaster response. With the advent of satellite-based synthetic aperture radar (SAR) sensors, we can deploy techniques to identify flooded areas worldwide while storms are occurring. In this communication, we present an automated near-real-time (NRT) system called RAdar-Produced Inundation Diary (RAPID), applying it to European Space Agency Sentinel-1 SAR images to produce flooding maps for Hurricane Dorian in the northern Bahamas. Images from RAPID released two days after the event show coastal flooding in the Bahamas reached areas located more than 10 km inland, covering more than 3,000 km2 of continental area. RAPID flood estimates from subsequent SAR images show the recession of the flood across the islands.

2020 ◽  
Vol 20 (5) ◽  
pp. 1463-1468
Author(s):  
Diego Cerrai ◽  
Qing Yang ◽  
Xinyi Shen ◽  
Marika Koukoula ◽  
Emmanouil N. Anagnostou

Abstract. In this communication, we present application of the automated near-real-time (NRT) system called RAdar-Produced Inundation Diary (RAPID) to European Space Agency Sentinel-1 synthetic aperture radar (SAR) images to produce flooding maps for Hurricane Dorian in the northern Bahamas. RAPID maps, released 2 d after the event, show that coastal flooding in the Bahamas reached areas located more than 10 km inland, covering more than 3000 km2 of continental area. RAPID flood estimates from subsequent SAR images show the recession of the flood across the islands and present high agreement scores when compared to Copernicus Emergency Management Service (Copernicus EMS) estimates.


2016 ◽  
Vol 20 (10) ◽  
pp. 4191-4208 ◽  
Author(s):  
Markus Enenkel ◽  
Christoph Reimer ◽  
Wouter Dorigo ◽  
Wolfgang Wagner ◽  
Isabella Pfeil ◽  
...  

Abstract. The soil moisture dataset that is generated via the Climate Change Initiative (CCI) of the European Space Agency (ESA) (ESA CCI SM) is a popular research product. It is composed of observations from 10 different satellites and aims to exploit the individual strengths of active (radar) and passive (radiometer) sensors, thereby providing surface soil moisture estimates at a spatial resolution of 0.25°. However, the annual updating cycle limits the use of the ESA CCI SM dataset for operational applications. Therefore, this study proposes an adaptation of the ESA CCI product for daily global updates via satellite-derived near-real-time (NRT) soil moisture observations. In order to extend the ESA CCI SM dataset from 1978 to present we use NRT observations from the Advanced Scatterometer on-board the two MetOp satellites and the Advanced Microwave Scanning Radiometer 2 on-board GCOM-W. Since these NRT observations do not incorporate the latest algorithmic updates, parameter databases and intercalibration efforts, by nature they offer a lower quality than reprocessed offline datasets. In addition to adaptations of the ESA CCI SM processing chain for NRT datasets, the quality of the NRT datasets is a main source of uncertainty. Our findings indicate that, despite issues in arid regions, the new CCI NRT dataset shows a good correlation with ESA CCI SM. The average global correlation coefficient between CCI NRT and ESA CCI SM (Pearson's R) is 0.80. An initial validation with 40 in situ observations in France, Spain, Senegal and Kenya yields an average R of 0.58 and 0.49 for ESA CCI SM and CCI NRT, respectively. In summary, the CCI NRT product is nearly as accurate as the existing ESA CCI SM product and, therefore, of significant value for operational applications such as drought and flood forecasting, agricultural index insurance or weather forecasting.


Author(s):  
Freskida Abazaj ◽  
Gëzim Hasko

Floods are one of the disasters that cause many human lives and property. In Albania, most floods are associated with periods of heavy rainfall. In recent years, Synthetic Aperture Radar (SAR) sensors, which provide reliable data in all weather conditions and day and night, have been favored because they eliminate the limitations of optical images. In this study, a flood occurred in the Buna River region in March 2018, was mapped using SAR Sentinel-1 data. The aim of this study is to investigate the potential of flood mapping using SAR images using different methodologies. Sentinel-1A / B SAR images of the study area were obtained from the European Space Agency (ESA). Preprocessing steps, which include trajectory correction, calibration, speckle filtering, and terrain correction, have been applied to the images. RGB composition and the calibrated threshold technique have been applied to SAR images to detect flooded areas and the results are discussed here.


1991 ◽  
Vol 222 ◽  
Author(s):  
B. Johs ◽  
J. L. Edwards ◽  
K. T. Shiralagi ◽  
R. Droopad ◽  
K. Y. Choi ◽  
...  

ABSTRACTA modular spectroscopic ellipsometer, capable of both in-situ and ex-situ operation, has been used to measure important growth parameters of GaAs/AIGaAs structures. The ex-situ measurements provided layer thicknesses and compositions of the grown structures. In-situ ellipsometric measurements allowed the determination of growth rates, layer thicknesses, and high temperature optical constants. By performing a regression analysis of the in-situ data in real-time, the thickness and composition of an AIGaAs layer were extracted during the MBE growth of the structure.


2009 ◽  
Vol 26 (3) ◽  
pp. 556-569 ◽  
Author(s):  
Ananda Pascual ◽  
Christine Boone ◽  
Gilles Larnicol ◽  
Pierre-Yves Le Traon

Abstract The timeliness of satellite altimeter measurements has a significant effect on their value for operational oceanography. In this paper, an Observing System Experiment (OSE) approach is used to assess the quality of real-time altimeter products, a key issue for robust monitoring and forecasting of the ocean state. In addition, the effect of two improved geophysical corrections and the number of missions that are combined in the altimeter products are also analyzed. The improved tidal and atmospheric corrections have a significant effect in coastal areas (0–100 km from the shore), and a comparison with tide gauge observations shows a slightly better agreement with the gridded delayed-time sea level anomalies (SLAs) with two altimeters [Jason-1 and European Remote Sensing Satellite-2 (ERS-2)/Envisat] using the new geophysical corrections (mean square differences in percent of tide gauge variance of 35.3%) than those with four missions [Jason-1, ERS/Envisat, Ocean Topography Experiment (TOPEX)/Poseidoninterlaced, and Geosat Follow-On] but using the old corrections (36.7%). In the deep ocean, however, the correction improvements have little influence. The performance of fast delivery products versus delayed-time data is compared using independent in situ data (tide gauge and drifter data). It clearly highlights the degradation of real-time SLA maps versus the delayed-time SLA maps: four altimeters are needed in real time to get the similar quality performance as two altimeters in delayed time (sea level error misfit around 36%, and zonal and meridional velocity estimation errors of 27% and 33%, respectively). This study proves that the continuous improvement of geophysical corrections is very important, and that it is essential to stay above a minimum threshold of four available altimetric missions to capture the main space and time oceanic scales in fast delivery products.


2020 ◽  
Vol 12 (4) ◽  
pp. 650
Author(s):  
Pablo Sánchez-Gámez ◽  
Carolina Gabarro ◽  
Antonio Turiel ◽  
Marcos Portabella

The European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) and the National Aeronautics and Space Administration (NASA) Soil Moisture Active Passive (SMAP) missions are providing brightness temperature measurements at 1.4 GHz (L-band) for about 10 and 4 years respectively. One of the new areas of geophysical exploitation of L-band radiometry is on thin (i.e., less than 1 m) Sea Ice Thickness (SIT), for which theoretical and empirical retrieval methods have been proposed. However, a comprehensive validation of SIT products has been hindered by the lack of suitable ground truth. The in-situ SIT datasets most commonly used for validation are affected by one important limitation: They are available mainly during late winter and spring months, when sea ice is fully developed and the thickness probability density function is wider than for autumn ice and less representative at the satellite spatial resolution. Using Upward Looking Sonar (ULS) data from the Woods Hole Oceanographic Institution (WHOI), acquired all year round, permits overcoming the mentioned limitation, thus improving the characterization of the L-band brightness temperature response to changes in thin SIT. State-of-the-art satellite SIT products and the Cumulative Freezing Degree Days (CFDD) model are verified against the ULS ground truth. The results show that the L-band SIT can be meaningfully retrieved up to 0.6 m, although the signal starts to saturate at 0.3 m. In contrast, despite the simplicity of the CFDD model, its predicted SIT values correlate very well with the ULS in-situ data during the sea ice growth season. The comparison between the CFDD SIT and the current L-band SIT products shows that both the sea ice concentration and the season are fundamental factors influencing the quality of the thickness retrieval from L-band satellites.


2019 ◽  
Vol 489 (4) ◽  
pp. 4734-4740 ◽  
Author(s):  
Isaac R H G Schroeder ◽  
Kathrin Altwegg ◽  
Hans Balsiger ◽  
Jean-Jacques Berthelier ◽  
Michael R Combi ◽  
...  

ABSTRACT The nucleus of the Jupiter-family comet 67P/Churyumov–Gerasimenko was discovered to be bi-lobate in shape when the European Space Agency spacecraft Rosetta first approached it in 2014 July. The bi-lobate structure of the cometary nucleus has led to much discussion regarding the possible manner of its formation and on how the composition of each lobe might compare with that of the other. During its two-year-long mission from 2014 to 2016, Rosetta remained in close proximity to 67P/Churyumov–Gerasimenko, studying its coma and nucleus in situ. Based on lobe-specific measurements of HDO and H2O performed with the ROSINA Double Focusing Mass Spectrometer (DFMS) on board Rosetta, the deuterium-to-hydrogen (D/H) ratios in water from the two lobes can be compared. No appreciable difference was observed, suggesting that both lobes formed in the same region and are homogeneous in their D/H ratios.


1994 ◽  
Vol 160 ◽  
pp. 381-394
Author(s):  
Yves Langevin

The European Space Agency (ESA) has selected Rosetta as the next cornerstone mission, to be launched in 2003. The goal is to perfom one or more fly-bys to main belt asteroids, followed by a rendez-vous with an active comet. Advanced in situ analysis, both in the coma and on the surfaces of the nucleus, will be possible, as well as monitoring by remote sensing instruments of the nucleus and of the inner coma for a time span of more than one year, until perihelion. This paper outlines the scientific and technological choices done in the definition of the mission.


1995 ◽  
Vol 10 ◽  
pp. 291-293
Author(s):  
Martin C.E. Huber ◽  
Arne Pedersen ◽  
Claus Fröhlich

There is one astrophysical system, where the sites of a star’s mass loss can be localised and observed in detail, and where the behaviour of the resulting stellar wind in the star’s environment and around orbiting obstacles can be investigated in situ: it is the Sun, the heliosphere and the surroundings of planets — among the latter most prominently the terrestrial magnetosphere. Indeed, within a year or so a fleet of satellites equipped with sophisticated remote-sensing and in-situ instruments will make this astronomical paradigm, or more precisely, the solar-terrestrial system accessible to intensive, multi-disciplinary study.Four identical CLUSTER spacecraft, orbiting the Earth within the magnetosphere, the surrounding space and the particularly interesting plasma boundary layers will perform a three-dimensional in-situ study of plasma-heating, particle-acceleration and other small-scale plasma processes (Schmidt and Goldstein,1988). A number of other missions — some of them already in orbit, like GEOTAIL and WIND, some to be launched within one or two years, like INTERBALL and POLAR — will provide information about the Earth’s magnetosphere and the solar wind on larger spatial scales. These missions are described in a Brochure issued jointly by the European Space Agency, NASA, the Japanese Institute of Space and Astronomical Science and the Rssian Space Agency, which can be obtained from A. Pedersen at the above address.


Sign in / Sign up

Export Citation Format

Share Document