scholarly journals Assessment of the 1783 Scilla landslide-tsunami effects on Calabria and Sicily coasts through numerical modeling

Author(s):  
Filippo Zaniboni ◽  
Gianluca Pagnoni ◽  
Glauco Gallotti ◽  
Maria Ausilia Paparo ◽  
Alberto Armigliato ◽  
...  

Abstract. The 1783 Scilla tsunami, induced by a coastal landslide occurring during an intense seismic sequence in Calabria (South Italy), was one of the most lethal ever observed in Italy. It caused more than 1500 fatalities, most of which on the 10 beach close to the town where people gathered to escape earthquake shaking. In this paper, complementing a previous work (Zaniboni et al., 2016) focusing on the very local tsunami effects in the town of Scilla, we study the tsunami impact on the Calabria and Sicily coasts out of Scilla. To this purpose we take into account the same landslide geometry considered in the previous study and perform three tsunami simulations, one embracing a larger region with a 50-m computational grid, and two covering the specific area of Capo Peloro, in Sicily, facing Scilla on the western side of the Messina Straits, with even 15 higher resolution (10 m mesh). Numerical results show a very good agreement with the historical observations in Capo Peloro. Moreover, the resulting global tsunami inundation pattern provides a useful hint for tsunami hazard assessment in the Messina Straits area, which is known to be one of the most exposed to tsunami threat in Italy and in the Mediterranean Sea.

Landslides ◽  
2020 ◽  
Vol 17 (10) ◽  
pp. 2301-2315 ◽  
Author(s):  
Finn Løvholt ◽  
Sylfest Glimsdal ◽  
Carl B. Harbitz

Abstract Landslides are the second most frequent tsunami source worldwide. However, their complex and diverse nature of origin combined with their infrequent event records make prognostic modelling challenging. In this paper, we present a probabilistic framework for analysing uncertainties emerging from the landslide source process. This probabilistic framework employs event trees and is used to conduct tsunami uncertainty analysis as well as probabilistic tsunami hazard analysis (PTHA). An example study is presented for the Lyngen fjord in Norway. This application uses a mix of empirical landslide data combined with expert judgement to come up with probability maps for tsunami inundation. Based on this study, it is concluded that the present landslide tsunami hazard analysis is largely driven by epistemic uncertainties. These epistemic uncertainties can be incorporated in the probabilistic framework. Conducting a literature analysis, we further show examples of how landslide and tsunami data can be used to better constrain landslide uncertainties, combined with statistical and numerical analysis methods. We discuss how these methods, combined with the probabilistic framework, can be used to improve landslide tsunami hazard analysis in the future.


2018 ◽  
Vol 6 (4) ◽  
pp. 111 ◽  
Author(s):  
Hai Tan ◽  
Gioele Ruffini ◽  
Valentin Heller ◽  
Shenghong Chen

This study presents a numerical landslide-tsunami hazard assessment technique for applications in reservoirs, lakes, fjords, and the sea. This technique is illustrated with hypothetical scenarios at Es Vedrà, offshore Ibiza, although currently no evidence suggests that this island may become unstable. The two selected scenarios include two particularly vulnerable locations, namely: (i) Cala d’Hort on Ibiza (3 km away from Es Vedrà) and (ii) Marina de Formentera (23 km away from Es Vedrà). The violent wave generation process is modelled with the meshless Lagrangian method smoothed particle hydrodynamics. Further offshore, the simulations are continued with the less computational expensive code SWASH (Simulating WAves till SHore), which is based on the non-hydrostatic non-linear shallow water equations that are capable of considering bottom friction and frequency dispersion. The up to 133-m high tsunamis decay relatively fast with distance from Es Vedrà; the wave height 5 m offshore Cala d’Hort is 14.2 m, reaching a maximum run-up height of over 21.5 m, whilst the offshore wave height (2.7 m) and maximum inundation depth at Marina de Formentera (1.2 m) are significantly smaller. This study illustrates that landslide-tsunami hazard assessment can nowadays readily be conducted under consideration of site-specific details such as the bathymetry and topography, and intends to support future investigations of real landslide-tsunami cases.


2015 ◽  
Vol 15 (11) ◽  
pp. 2557-2568 ◽  
Author(s):  
M. Wronna ◽  
R. Omira ◽  
M. A. Baptista

Abstract. In this paper, we present a deterministic approach to tsunami hazard assessment for the city and harbour of Sines, Portugal, one of the test sites of project ASTARTE (Assessment, STrategy And Risk Reduction for Tsunamis in Europe). Sines has one of the most important deep-water ports, which has oil-bearing, petrochemical, liquid-bulk, coal, and container terminals. The port and its industrial infrastructures face the ocean southwest towards the main seismogenic sources. This work considers two different seismic zones: the Southwest Iberian Margin and the Gloria Fault. Within these two regions, we selected a total of six scenarios to assess the tsunami impact at the test site. The tsunami simulations are computed using NSWING, a Non-linear Shallow Water model wIth Nested Grids. In this study, the static effect of tides is analysed for three different tidal stages: MLLW (mean lower low water), MSL (mean sea level), and MHHW (mean higher high water). For each scenario, the tsunami hazard is described by maximum values of wave height, flow depth, drawback, maximum inundation area and run-up. Synthetic waveforms are computed at virtual tide gauges at specific locations outside and inside the harbour. The final results describe the impact at the Sines test site considering the single scenarios at mean sea level, the aggregate scenario, and the influence of the tide on the aggregate scenario. The results confirm the composite source of Horseshoe and Marques de Pombal faults as the worst-case scenario, with wave heights of over 10 m, which reach the coast approximately 22 min after the rupture. It dominates the aggregate scenario by about 60 % of the impact area at the test site, considering maximum wave height and maximum flow depth. The HSMPF scenario inundates a total area of 3.5 km2.


2016 ◽  
Vol 173 (12) ◽  
pp. 3671-3692 ◽  
Author(s):  
Randall J. LeVeque ◽  
Knut Waagan ◽  
Frank I. González ◽  
Donsub Rim ◽  
Guang Lin

Author(s):  
Вячеслав Константинович Гусяков ◽  
Владимир Андреевич Кихтенко ◽  
Леонид Борисович Чубаров ◽  
Юрий Иванович Шокин

В работе идет речь о реализации методики вероятностного цунамирайонирования побережья, известной под названием PTHA (Probabilistic Tsunami Hazard Assessment), для создания обзорных карт цунамиопасности дальневосточного побережья России. Обсуждаются методологические основы такого подхода, проблемы построения сейсмотектонических моделей основных цунамигенных зон, численные методики получения расчетных каталогов высот волн на побережье. Приведены примеры обзорных карт для различных повторяемостей, построенных с применением методики PTHA и представленных с помощью созданного веб-приложения WTMap. Упоминаются также некоторые проблемы применения методики PTHA, связанные как с недостаточностью данных наблюдений, так и со сложностью выполнения большого объема сценарного численного моделирования. The article describes the results of the implementation of the PTHA (Probabilistic Tsunami Hazard Assessment) methodology for creating the overview maps of tsunami hazard for the Far East coast of the Russian Federation. Such maps show the characteristics of the catastrophic impact of tsunami waves on the coast and the probability of their exceeding in a given period of time. The methodological basis of the PTHA approach to the assessment of tsunami hazard, the problems of constructing seismotectonic models of the main tsunamigenic zones, mathematical models and algorithms for calculating probability estimates of tsunami danger are discussed. The version of the PTHA methodology outlined in the article is implemented as a “WTmap” Web-application that has an access to the entire observational information related to coastal tsunami zoning and software packages used. The application allows to obtain the estimates of the expected tsunami heights and their recurrence estimates and to map them on specific parts of the Far Eastern coast of the Russian Federation. The obtained estimates can be quickly recalculated when replacing the observational catalogs with more complete and reliable ones, with the addition of new, previously absent events or the revision of their parameters, as well as the results of new scenario calculations. Examples of overview maps for various recurrence intervals, constructed using the PTHA methodology and presented using the “WTMap” application, are given. Some problems of using the PTHA methodology related to the lack of available observational data and to the complexity of performing a large amount of scenario simulations are also discussed.


2021 ◽  
Vol 331 ◽  
pp. 04006
Author(s):  
Leli Honesti ◽  
Meli Muchlian

A tsunami hazard is an adverse event that causes damage to properties and loss of life. The problem in assessing a tsunami risk zone for a small area is significant, as available tsunami inundation zone data does not give detailed information for tsunami inundation and run-up in every nested grid. Hence, this study aims to establish a tsunami risk map in the Pasir Jambak sub-district, Padang, Indonesia. The map was carried out in every nested grid point of the area and on a large scale (1:5,000). The TUNAMI N3 program was used for the simulation of the tsunami inundation. A tsunami assessment was made through simulations in nine scenarios of fault parameter data for Sipora block earthquakes. The result of the study provides a tsunami inundation map. Furthermore, this tsunami inundation map can be used for communities, local authorities, government, and others for many studies, and decision-makers can come up with mitigation plans for a small study area.


Sign in / Sign up

Export Citation Format

Share Document