scholarly journals Flood risk assessment of the European road network

2021 ◽  
Vol 21 (3) ◽  
pp. 1011-1027
Author(s):  
Kees C. H. van Ginkel ◽  
Francesco Dottori ◽  
Lorenzo Alfieri ◽  
Luc Feyen ◽  
Elco E. Koks

Abstract. River floods pose a significant threat to road transport infrastructure in Europe. This study presents a high-resolution object-based continental-scale assessment of direct flood risk of the European road network for the present climate, using high-resolution exposure data from OpenStreetMap. A new set of road-specific damage functions is developed. The expected annual direct damage from large river floods to road infrastructure in Europe is EUR 230 million per year. Compared to grid-based approaches, the object-based approach is more precise and provides more action perspective for road owners because it calculates damage directly for individual road segments while accounting for segment-specific attributes. This enables the identification of European hotspots, such as roads in the Alps and along the Sava River. A first comparison to a reference case shows that the new object-based method computes realistic damage estimates, paving the way for targeted risk reduction strategies.

2020 ◽  
Author(s):  
Kees C. H. van Ginkel ◽  
Francesco Dottori ◽  
Lorenzo Alfieri ◽  
Luc Feyen ◽  
Elco E. Koks

Abstract. River floods pose a significant threat to road transport infrastructure in Europe. This study presents a high-resolution object-based continental-scale assessment of direct flood risk of the European road network for the present climate, using high-resolution exposure data from OpenStreetMap. A new set of road-specific damage functions is developed and validated for an observed flood event. We estimate the median annual expected direct damage from river floods to road infrastructure in Europe at 250 million euro per year. A comparison with grid-based approaches suggests that these methods likely overestimate direct flood damage to road infrastructure and might allocate infrastructural damage to the wrong land use classes. A first validation shows that our object-based method computes realistic damage estimates, paving the way for targeted risk adaptation strategies.


2020 ◽  
Author(s):  
Ana Laura Costa ◽  
Elco Koks ◽  
Kees van Ginkel ◽  
Frederique de Groen ◽  
Lorenzo Alfieri ◽  
...  

<p>River flooding is among the most profound climate hazards in Europe and poses a threat to its road transport infrastructure. Traditional continental-scale flood risk studies do not accurately capture these disruptions because they are typically grid-based, whereas roads are relatively narrow line elements which are therefore omitted. Moreover, these grid-approaches disregard the network properties of roads, whereas the costs of reduced mobility could largely exceed the costs of the physical damage to the infrastructure.</p><p>We address these issues by proposing and applying an improved physical damage assessment coupled with the assessment of mobility disruption for a comprehensive risk assessment at a continental level.</p><p>In this study, we introduce an object-based, continental scale flood risk assessment of the European road network. We improve the estimates of direct, physical damage, by drawing road network data from OpenStreetMap, while making optimal use of the available metadata. We also introduce a set of road-specific flood damage functions, which are validated for an observed flood event in Germany. The results of this approach are compared to the traditional, grid-based approach to modelling road transport damage.</p><p>Next, we showcase how the object-based approach can be used to study potential mobility disruptions. In this study we present how the network data from OpenStreetMap and available metadata can be used to assess the flood impacts in terms of decreased connectivity, that is, increased distance, time and/or costs. The approach is flexible in physical scope, able to address national and continental resilience assessments and provide advice on tipping points of service performance. Furthermore, flexibility is also incorporated in terms of different resilience perspectives including decision-making by the asset owner or the national or trans-national supply chain disruption to a particular economic sector or company.</p><p>Finally, the risk assessment is discussed based on applications for the impacts of floods on European roads and the potential to extend to multi-hazard assessments (landslides, earthquakes, pluvial flooding) and other types of critical networks is discussed.  </p><p> </p><p>This paper has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 776479 for the project CO-designing the Assessment of Climate CHange costs. https://www.coacch.eu/</p><p> </p>


2019 ◽  
Author(s):  
Adriaan J. Teuling ◽  
Emile de Badts ◽  
Femke A. Jansen ◽  
Richard Fuchs ◽  
Joost Buitink ◽  
...  

Abstract. Since the 1950s, Europe has seen large shifts in climate and land cover. Previous assessments of past and future changes in evapotranspiration or streamflow have either focussed on land use/cover or climate contributions, or have focussed on individual catchments under specific climate conditions. Here, we aim to understand how decadal changes in climate (e.g., precipitation, temperature) and land use (e.g., de-/afforestation, urbanization) have impacted the amount and distribution of water resources availability across Europe since the 1950s. To this end, we simulate the distribution of green and blue water fluxes at high-resolution (1 × 1 km) by combining (a) a steady-state Budyko model for water balance partitioning constrained by long-term (lysimeter) observations across different land-use types, (b) a novel decadal high-resolution historical land use reconstruction, and (c) gridded observations of key meteorological variables. The continental-scale patterns in the simulations agree well with coarser-scale observation-based estimates of evapotranspiration, and also with observed changes in streamflow from small basins across Europe. We find that strong shifts in the continental-scale patterns of evapotranspiration and streamflow have occured from 1950 to 2010. In Sweden, for example, increased precipitation dominates effects of large scale re- and afforestation leading to increases in both streamflow and evapotranspiration. In most of the Mediterrenean, decreased precipitation combines with increased forest cover and potential evapotranspiration to reduce streamflow. In spite of local and regional scale complexity, the Europe-wide net contribution of land use, precipitation and potential evapotranspiration changes to changes in ET is similar with around ~ 40 km3/y, equivalent to the discharge of a large river. For streamflow, changes in precipitation dominate land use and potential evapotranspiration contributions with ~ 90 km3/y compared to ~ 45 km3/y. Locally, increased forest cover and urbanisation have lead to significant decreases and increases of available streamflow.


Author(s):  
Kees C. H. van Ginkel ◽  
Francesco Dottori ◽  
Lorenzo Alfieri ◽  
Luc Feyen ◽  
Elco E. Koks

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Hao Wu ◽  
Paolo Avner ◽  
Genevieve Boisjoly ◽  
Carlos K. V. Braga ◽  
Ahmed El-Geneidy ◽  
...  

AbstractAccess (the ease of reaching valued destinations) is underpinned by land use and transport infrastructure. The importance of access in transport, sustainability, and urban economics is increasingly recognized. In particular, access provides a universal unit of measurement to examine cities for the efficiency of transport and land-use systems. This paper examines the relationship between population-weighted access and metropolitan population in global metropolitan areas (cities) using 30-min cumulative access to jobs for 4 different modes of transport; 117 cities from 16 countries and 6 continents are included. Sprawling development with the intensive road network in American cities produces modest automobile access relative to their sizes, but American cities lag behind globally in transit and walking access; Australian and Canadian cities have lower automobile access, but better transit access than American cities; combining compact development with an intensive network produces the highest access in Chinese and European cities for their sizes. Hence density and mobility co-produce better access. This paper finds access to jobs increases with populations sublinearly, so doubling the metropolitan population results in less than double access to jobs. The relationship between population and access characterizes regions, countries, and cities, and significant similarities exist between cities from the same country.


Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 320
Author(s):  
Emilio Guirado ◽  
Javier Blanco-Sacristán ◽  
Emilio Rodríguez-Caballero ◽  
Siham Tabik ◽  
Domingo Alcaraz-Segura ◽  
...  

Vegetation generally appears scattered in drylands. Its structure, composition and spatial patterns are key controls of biotic interactions, water, and nutrient cycles. Applying segmentation methods to very high-resolution images for monitoring changes in vegetation cover can provide relevant information for dryland conservation ecology. For this reason, improving segmentation methods and understanding the effect of spatial resolution on segmentation results is key to improve dryland vegetation monitoring. We explored and analyzed the accuracy of Object-Based Image Analysis (OBIA) and Mask Region-based Convolutional Neural Networks (Mask R-CNN) and the fusion of both methods in the segmentation of scattered vegetation in a dryland ecosystem. As a case study, we mapped Ziziphus lotus, the dominant shrub of a habitat of conservation priority in one of the driest areas of Europe. Our results show for the first time that the fusion of the results from OBIA and Mask R-CNN increases the accuracy of the segmentation of scattered shrubs up to 25% compared to both methods separately. Hence, by fusing OBIA and Mask R-CNNs on very high-resolution images, the improved segmentation accuracy of vegetation mapping would lead to more precise and sensitive monitoring of changes in biodiversity and ecosystem services in drylands.


2020 ◽  
Vol 10 (1) ◽  
pp. 8
Author(s):  
Sultan Alamri

In many developing cities, the improvement of transport infrastructure is usually accompanied by major road construction and maintenance. This paper presents approaches and opportunities using peer-to-peer updating to improve spatial road networks undergoing construction and maintenance, which in turn will improve traffic flow and benefit cities overall. In many cities, the spatial road network requires maintenance, and these works often require traffic detours. With the current GPS (Global Positioning System) services, there is a noticeable delay in the updating of many spatial road networks. Thus, when a driver plans a trip to a certain location (such as Starbucks), his/her usual route may have changed, but the spatial road network in the GPS has not been updated. This can affect the user in many ways. For example, a trip that usually takes five minutes might now take half an hour, taking into account the additional time required to find alternative roads and possibly encountering more unexpected road closures, until the driver reaches his/her destination. This paper addresses this issue by proposing solutions that offer several advantages including a new peer-to-peer updating mechanism that helps to direct the driver to another route when road changes occur. Moreover, the peer-to-peer updating mechanism can enable the independent monitoring of road conditions and the updating of maps for newly-constructed roads, as well as the analysis of road congestions, traffic density, and people movements at certain times. Note that this work focuses on the conceptual ideas and approaches intended to improve independent maps, and the detailed algorithms have been left for future work.


Sign in / Sign up

Export Citation Format

Share Document