scholarly journals Estimation of the non-exceedance probability of extreme storm surges in South Korea using tidal-gauge data

2021 ◽  
Vol 21 (8) ◽  
pp. 2611-2631
Author(s):  
Sang-Guk Yum ◽  
Hsi-Hsien Wei ◽  
Sung-Hwan Jang

Abstract. Global warming, one of the most serious aspects of climate change, can be expected to cause rising sea levels. These have in turn been linked to unprecedentedly large typhoons that can cause flooding of low-lying land, coastal invasion, seawater flows into rivers and groundwater, rising river levels, and aberrant tides. To prevent typhoon-related loss of life and property damage, it is crucial to accurately estimate storm-surge risk. This study therefore develops a statistical model for estimating such surges' probability based on surge data pertaining to Typhoon Maemi, which struck South Korea in 2003. Specifically, estimation of non-exceedance probability models of the typhoon-related storm surge was achieved via clustered separated peaks-over-threshold simulation, while various distribution models were fitted to the empirical data for investigating the risk of storm surges reaching particular heights. To explore the non-exceedance probability of extreme storm surges caused by typhoons, a threshold algorithm with clustering methodology was applied. To enhance the accuracy of such non-exceedance probability, the surge data were separated into three different components: predicted water level, observed water level, and surge. Sea-level data from when Typhoon Maemi struck were collected from a tidal-gauge station in the city of Busan, which is vulnerable to typhoon-related disasters due to its geographical characteristics. Fréchet, gamma, log-normal, generalized Pareto, and Weibull distributions were fitted to the empirical surge data, and the researchers compared each one's performance at explaining the non-exceedance probability. This established that Weibull distribution was better than any of the other distributions for modelling Typhoon Maemi's peak total water level. Although this research was limited to one city on the Korean Peninsula and one extreme weather event, its approach could be used to reliably estimate non-exceedance probabilities in other regions where tidal-gauge data are available. In practical terms, the findings of this study and future ones adopting its methodology will provide a useful reference for designers of coastal infrastructure.

2020 ◽  
Author(s):  
Sang-Guk Yum ◽  
Hsi-Hsien Wei ◽  
Sung-Hwan Jang

Abstract. Global warming, one of the most serious aspects of climate change, can be expected to cause rising sea levels. These, in turn, have been linked to unprecedentedly large typhoons that can cause flooding of low-lying land, coastal invasion, seawater flows into rivers and groundwater, rising river levels, and aberrant tides. To prevent loss of life and property damage caused by typhoons, it is crucial to accurately estimate storm surge related risk. This study therefore develops a statistical model for estimating probability model, based on surge data pertaining to Typhoon Maemi, which struck South Korea in 2003. Specifically, estimation of non-exceedance probability models of the typhoon-related storm surge was achieved via clustered separated peaks-over-threshold simulation, while various distribution models were fitted to the empirical data for investigating the risk of storm surge height. The result of this process found that the result of Weibull distribution was better than other distribution model for Typhoon Maemi's peak total water level.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1559
Author(s):  
Halina Kowalewska-Kalkowska

The Odra River mouth area is a region of the Southern Baltic coastal zone especially prone to the influence of storm surges. In the present study, the height and extent of the Baltic storm surges, and temporal offsets of the respective maximum water level occurrences in the Odra River mouth area were explored using cross-correlation, cluster analysis and principal component analysis. The analyses were based on hourly water level readings retrieved from water gauging stations located along the lower Odra reaches and at the coasts of the Szczecin Lagoon and the Pomeranian Bay during storm surge years 2008/2009–2019/2020. The analysis of mutual relationships between water levels during storm surges indicated that the extent of marine influence on the lower Odra River and within the Szczecin Lagoon was variable during the studied surge events, and dependent on meteorological conditions (the strongest during the sustained occurrence of wind blowing from the northern sector), discharge from the Odra River catchment (the strongest at low discharge), ice conditions on the lower Odra (suppressing the storm surge propagation upstream), and general sea level in the Pomeranian Bay (stronger at high sea levels). The strongest correlation between sea levels at Świnoujście and water levels in the Szczecin Lagoon and the lower Odra was found at a 6–7 h offset. The extent of storm surges usually reached 100 km up the lower Odra channels, less frequently reaching 130 km away from the sea.


Author(s):  
Yako Harada ◽  
Yukihisa Matsumoto ◽  
Kazuho Morishita ◽  
Nobuyuki Oonishi ◽  
Kazuyoshi Kihara ◽  
...  

The vertical telescopic breakwater(VTB), which is a new breakwater that permits the navigation of ships, remain at the bottom of the sea during calm and rise to the surface during tsunamis or storm surges. Kawai et al. (2017) and Arikawa et al. (2019) found that it is effective not only for swell waves, but also for long-period waves simulating tsunamis and storm surges by previous experiments and numerical analyses. However, there have been few studies on the performance of VTB by numerical calculations in actual ports using actual typhoons. In addition, sea levels and changes in characteristics of typhoon due to climate change are predicted to occur; hence, we are concerned about the damage in all quarters caused by storm surge inundation, especially at Tokyo. Therefore, in this study, we used hypothetical typhoons under worst-case scenarios and quantitatively evaluated the protection performance of VTB against hypothetical typhoons with different aperture rates of VTB in Tokyo Bay by the numerical simulation.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/qof5ixKqIiA


2011 ◽  
Vol 94-96 ◽  
pp. 810-814
Author(s):  
Jin Shan Zhang ◽  
Wei Sheng Zhang ◽  
Chen Cheng ◽  
Lin Yun Sun

Bohai Bay is an semi-closed bay, the storm surge disaster is very serious in past. Now more and more large ocean engineering are built here, To study changes of storm surge induced by the construction of large-scale coastal engineering in Bohai Bay in present, 2D numerical storm surge model is established with large - medium - small model nested approach. The three most typical storms surges: 9216, 9711 and by cold wave in October 2003 are simulated in the condition of before and after implementation of planning projects in Bohai Bay. Changes of storm surge water level due to implementation of artificial projects are analysis in this paper.


2020 ◽  
Vol 8 (12) ◽  
pp. 1028
Author(s):  
Wagner Costa ◽  
Déborah Idier ◽  
Jérémy Rohmer ◽  
Melisa Menendez ◽  
Paula Camus

Increasing our capacity to predict extreme storm surges is one of the key issues in terms of coastal flood risk prevention and adaptation. Dynamically forecasting storm surges is computationally expensive. Here, we focus on an alternative data-driven approach and set up a weather-type statistical downscaling for daily maximum storm surge (SS) prediction, using atmospheric hindcasts (CFSR and CFSv2) and 15 years of tidal gauge station measurements. We focus on predicting the storm surge at La Rochelle–La Pallice tidal gauge station. First, based on a sensitivity analysis to the various parameters of the weather-type approach, we find that the model configuration providing the best performance in SS prediction relies on a fully supervised classification using minimum daily sea level pressure (SLP) and maximum SLP gradient, with 1° resolution in the northeast Atlantic domain as the predictor. Second, we compare the resulting optimal model with the inverse barometer approach and other statistical models (multi-linear regression; semi-supervised and unsupervised weather-types based approaches). The optimal configuration provides more accurate predictions for extreme storm surges, but also the capacity to identify unusual atmospheric storm patterns that can lead to extreme storm surges, as the Xynthia storm for instance (a decrease in the maximum absolute error of 50%).


2022 ◽  
Author(s):  
Karolina Leszczyńska ◽  
Karl Stattegger ◽  
Damian Moskalewicz ◽  
Robert Jagodziński ◽  
Mikołaj Kokociński ◽  
...  

Abstract Climate change and related sea-level rise pose significant threats to sandy lowland coasts, which account for approximately 30% of the global coastline. However, the role of key controlling factors responsible for the frequency and extent of extreme storm surge of inundation regime is not yet fully understood. Here, we present the longest to date, high-resolution sedimentary record of extreme storm surge flooding from the microtidal southern Baltic Sea, spanning two periods: 3.6-2.9 ka BP and 0.7 ka BP until present. Wetland sediments, including sandy event layers, were analyzed by sedimentological (grain size, loss-on-ignition, micromorphology), geochronological (14C, 210Pb, 137Cs), geochemical (XRF), mineralogical (heavy minerals) and micropaleontological (diatoms) methods. Our results revealed that both periods are characterized by high-frequency storm surge flooding in order of 1.3 – 4.2 events per century. They are correlated to widely recognized enhanced storminess periods in NW Europe and took place during both rising and fluctuating sea levels. The presented results show that the storm surge driven coastal inundation frequency and extent largely depend on the development of coastal barriers (e.g., beach ridges). Thus, in the context of the future coastal storm surge hazard, the protection of existing coastal barriers is essential.


Author(s):  
Andrei Raphael Dita ◽  
Eric Cruz ◽  
Jose Carlo Eric Santos

A marina for small crafts is being planned to be built within Caliraya Lake situated at an elevation of 290m above Mean Sea Level (maMSL). Unlike sea-connected water bodies, the water level of Caliraya Lake is largely influenced not by tidal fluctuations, but by the operational water level requirements of the hydroelectric power plant that it caters to. Due to the large difference in the Normal High Water Level (NHWL) and Minimum Operating Level (MOL) of the lake of 2.5m, a floating pontoon marina with guide piles was contemplated to be used. The marina analysis and design approaches implemented in this study considered waves generated by prevailing winds and ship-generated wakes to assess the wave climate and tranquility within the marina. Since the project area is also frequently tracked by typhoons, wind- and pressure-driven storm surges were also used for the vertical siting of the guide piles. Lastly, based on the geographic appearances of the lake shoreline and with the small size of the lake, the fetch limitations resulted to very small wind-generated waves and wind setup considered as wind-driven storm surge components. In comparison to open seas where wind-driven storm surge accounts for approximately 95percent of the total storm surge, the wind-driven storm surge components for the potentially critical historical typhoons which traversed within 200-km radius of the project area only generated 10-30percent of the total storm surge considered for the vertical siting.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/m-XEEw6r99g


2021 ◽  
Vol 9 (12) ◽  
pp. 1430
Author(s):  
Francisco Silveira ◽  
Carina Lurdes Lopes ◽  
João Pedro Pinheiro ◽  
Humberto Pereira ◽  
João Miguel Dias

Coastal floods are currently a strong threat to socioeconomic activities established on the margins of lagoons and estuaries, as well as to their ecological equilibrium, a situation that is expected to become even more worrying in the future in a climate change context. The Ria de Aveiro lagoon, located on the northwest coast of Portugal, is not an exception to these threats, especially considering the low topography of its margins which has led to several flood events in the past. The growing concerns with these regions stem from the mean sea level (MSL) rise induced by climate changes as well as the amplification of the impacts of storm surge events, which are predicted to increase in the future due to higher mean sea levels. Therefore, this study aims to evaluate the influence of MSL rise on the inundation of Ria de Aveiro habitats and to assess the changes in inundation patterns resulting from frequent storm surges (2-year return period) from the present to the future, assessing their ecological and socioeconomic impacts. For this, a numerical model (Delft3D), previously calibrated and validated, was used to simulate the lagoon hydrodynamics under different scenarios combining MSL rise and frequent storm surge events. The numerical results demonstrated that MSL rise can change the vertical zonation and threaten the local habitats. Many areas of the lagoon may change from supratidal/intertidal to intertidal/subtidal, with relevant consequences for local species. The increase in MSL expected for the end of the century could make the lagoon more vulnerable to the effect of frequent storm surges, harming mostly agricultural areas, causing great losses for this sector and for many communities who depend on it. These extreme events can also affect artificialized areas and, in some cases, endanger lives.


2012 ◽  
Vol 1 (33) ◽  
pp. 53
Author(s):  
Leigh MacPherson ◽  
Ivan David Haigh ◽  
Matthew Mason ◽  
Sarath Wijeratne ◽  
Charitha Pattiaratchi ◽  
...  

The potential impacts of extreme water level events on our coasts are increasing as populations grow and sea levels rise. To better prepare for the future, coastal engineers and managers need accurate estimates of average exceedance probabilities for extreme water levels. In this paper, we estimate present day probabilities of extreme water levels around the entire coastline of Australia. Tides and storm surges generated by extra-tropical storms were included by creating a 61-year (1949-2009) hindcast of water levels using a high resolution depth averaged hydrodynamic model driven with meteorological data from a global reanalysis. Tropical cyclone-induced surges were included through numerical modelling of a database of synthetic tropical cyclones equivalent to 10,000 years of cyclone activity around Australia. Predicted water level data was analysed using extreme value theory to construct return period curves for both the water level hindcast and synthetic tropical cyclone modelling. These return period curves were then combined by taking the highest water level at each return period.


Sign in / Sign up

Export Citation Format

Share Document