scholarly journals A new view on the risk of typhoon occurrence in the western North Pacific

2021 ◽  
Vol 21 (2) ◽  
pp. 663-682
Author(s):  
Kelvin S. Ng ◽  
Gregor C. Leckebusch

Abstract. To study high-impact tropical cyclones (TCs) is of crucial importance due to their extraordinary destructive potential that leads to major losses in many coastal areas in the western North Pacific (WNP). Nevertheless, because of the rarity of high-impact TCs, it is difficult to construct a robust hazard assessment based on the historical best track records. This paper aims to address this issue by introducing a computationally simple and efficient approach to build a physically consistent high-impact TC event set with non-realised TC events in the THORPEX Interactive Grand Global Ensemble (TIGGE) archive. This event set contains more than 10 000 years of TC events. The temporal and spatial characteristics of the new event set are consistent with the historical TC climatology in the WNP. It is shown that this TC event set contains ∼100 and ∼77 times more very severe typhoons and violent typhoons than the historical records, respectively. Furthermore, this approach can be used to improve the return-period estimation of TC-associated extreme wind. Consequently, a robust extreme TC hazard assessment, reflective of the current long-term climate variability phase, can be achieved using this approach.

2020 ◽  
Author(s):  
Kelvin S. Ng ◽  
Gregor C. Leckebusch

Abstract. To study high impact tropical cyclone (TC) is of crucial importance due to its extraordinary destruction potential that leads to major losses in many coastal areas in the Western North Pacific (WNP). Nevertheless, because of the rarity of high-impact TCs, it is difficult to construct a robust risk assessment based on the historical best track records. This paper aims to address this issue by introducing a computationally simple and efficient approach, using data from the THORPEX Interactive Grand Global Ensemble (TIGGE) archive with the application of impact-oriented tracking algorithm, to build a physically consistent high impact typhoon event set with non-realised TC events – data equivalent to more than 10 000 years of TC events. The temporal and spatial characteristics of the new event set is consistent to the historical TC climatology in the WNP. It is shown that this TC event set contains ~ 100 and ~ 77 times more Very Severe Typhoons and Violent Typhoons than the historical records, respectively. Furthermore, this approach can be used to improve the return period estimation of TC-associated extreme wind. Consequently, a robust extreme TC hazard risk assessment, reflective of the current long-term climate variability phase, can be achieved using this approach.


2016 ◽  
Vol 78 (9) ◽  
pp. 1457-1464 ◽  
Author(s):  
Kazue OHISHI ◽  
Takeharu BANDO ◽  
Erika ABE ◽  
Yasushi KAWAI ◽  
Yoshihiro FUJISE ◽  
...  

2006 ◽  
Vol 53 (1-2) ◽  
pp. 21-28 ◽  
Author(s):  
Toshinori Ueshima ◽  
Masanobu Yamamoto ◽  
Tomohisa Irino ◽  
Tadamichi Oba ◽  
Masao Minagawa ◽  
...  

2018 ◽  
Vol 18 (2) ◽  
pp. 1291-1306 ◽  
Author(s):  
Suresh K. R. Boreddy ◽  
M. Mozammel Haque ◽  
Kimitaka Kawamura

Abstract. The present study reports on long-term trends of carbonaceous aerosols in total suspended particulate (TSP) samples collected at Chichijima in the western North Pacific during 2001–2012. Seasonal variations of elemental carbon (EC), organic carbon (OC), and water-soluble organic carbon (WSOC) concentrations showed maxima in winter to spring and minima in summer. These seasonal differences in the concentrations of carbonaceous aerosols were associated with the outflows of polluted air masses from East Asia, which are clearly distinguishable from pristine air masses from the central Pacific. The higher concentrations of carbonaceous aerosols during winter to spring are associated with long-range atmospheric transport of East Asian continental polluted air masses, whereas lower concentrations may be due to pristine air masses from the central Pacific in summer. The annual trends of OC ∕ EC (+0.46 % yr−1), WSOC (+0.18 % yr−1) and WSOC ∕ OC (+0.08 % yr−1) showed significant (p  <  0.05) increases during the period of 2001–2012, suggesting that photochemical formation of WSOC and its contributions to secondary organic aerosols (SOAs) have increased over the western North Pacific via long-range atmospheric transport. We found a significant increase (+0.33 % yr−1) in nss-K+ ∕ EC ratios, demonstrating that concentrations of biomass-burning-derived carbonaceous aerosols have increased, while those of primary fossil-fuel-derived aerosols have decreased over the western North Pacific. Further, secondary biogenic emissions are also important over the western North Pacific as inferred from a significant increase (+0.14 % yr−1) in the concentrations of methanesulfonate (MSA−, a tracer for biogenic sources). This point was further supported by a moderate correlation (r = 0.40) between WSOC and MSA−. We also found a significant increase in OC ∕ TC (total carbon) and WSOC ∕ TC ratios, further suggesting that photochemical formation of WSOC and its contributions to SOAs have increased over the western North Pacific during 2001–2012 via long-range atmospheric transport from East Asia.


2021 ◽  
pp. 1-46
Author(s):  
Sho Arakane ◽  
Huang-Hsiung Hsu

AbstractThe monsoon trough and subtropical high have long been acknowledged to exert a substantial modulating effect on the genesis and development of TCs in the western North Pacific (WNP). However, the potential upscaling effect of TCs on large-scale circulation remains poorly understood. This study revealed the considerable contributions of TCs to the climate mean state and variability in the WNP between 1958 and 2019, characterized by a strengthened monsoon trough and weakened subtropical anticyclonic circulation in the lower troposphere, enhanced anticyclonic circulation in the upper troposphere, and warming throughout the troposphere. TCs constituted distinct footprints in the long-term mean states of the WNP summer monsoon, and their contributions increased intraseasonal and interannual variance by 50%–70%. The interdecadal variations and long-term trends in intraseasonal variance were mainly due to the year-to-year fluctuations in TC activity. The size of TC footprints was positively correlated with the magnitude of TC activity.Our findings suggest that the full understanding of climate variability and changes cannot be achieved simply on the basis of low-frequency, large-scale circulations. Rather, TCs must be regarded as a crucial component in the climate system, and their interactions with large-scale circulations require thorough exploration. The long-term dataset created in this study provides an opportunity to study the interaction between TCs and TC-free large-scale circulations to advance our understanding of climate variability in the WNP. Our findings also indicate that realistic climate projections must involve the accurate simulations of TCs.


Sign in / Sign up

Export Citation Format

Share Document