scholarly journals Flood risk assessment and associated uncertainty

2004 ◽  
Vol 4 (2) ◽  
pp. 295-308 ◽  
Author(s):  
H. Apel ◽  
A. H. Thieken ◽  
B. Merz ◽  
G. Blöschl

Abstract. Flood disaster mitigation strategies should be based on a comprehensive assessment of the flood risk combined with a thorough investigation of the uncertainties associated with the risk assessment procedure. Within the "German Research Network of Natural Disasters" (DFNK) the working group "Flood Risk Analysis" investigated the flood process chain from precipitation, runoff generation and concentration in the catchment, flood routing in the river network, possible failure of flood protection measures, inundation to economic damage. The working group represented each of these processes by deterministic, spatially distributed models at different scales. While these models provide the necessary understanding of the flood process chain, they are not suitable for risk and uncertainty analyses due to their complex nature and high CPU-time demand. We have therefore developed a stochastic flood risk model consisting of simplified model components associated with the components of the process chain. We parameterised these model components based on the results of the complex deterministic models and used them for the risk and uncertainty analysis in a Monte Carlo framework. The Monte Carlo framework is hierarchically structured in two layers representing two different sources of uncertainty, aleatory uncertainty (due to natural and anthropogenic variability) and epistemic uncertainty (due to incomplete knowledge of the system). The model allows us to calculate probabilities of occurrence for events of different magnitudes along with the expected economic damage in a target area in the first layer of the Monte Carlo framework, i.e. to assess the economic risks, and to derive uncertainty bounds associated with these risks in the second layer. It is also possible to identify the contributions of individual sources of uncertainty to the overall uncertainty. It could be shown that the uncertainty caused by epistemic sources significantly alters the results obtained with aleatory uncertainty alone. The model was applied to reaches of the river Rhine downstream of Cologne.

2021 ◽  
Author(s):  
Nivedita Sairam ◽  
Fabio Brill ◽  
Tobias Sieg ◽  
Patric Kellermann ◽  
Kai Schröter ◽  
...  

<p>Floods affect people worldwide and account for more than USD 100 billion losses on average every year. Hazard, Exposure and Vulnerability are the three components that influence flood risk. Flood Risk Management (FRM) decisions especially, with respect to new flood defense schemes and resilience initiatives are generally taken based on the assessment of impacts for hazard scenarios. Current large-scale studies are comprehensive in terms of sectors covered in impact assessment. However, these studies often deploy generalized data and methods on the model components resulting in coarse risk estimates with low spatial resolution.</p><p>In this study, we use process-based models with 100m resolution on the national scale within a systems approach to develop and simulate a 5000 year flood event catalogue for Germany. The events are then analyzed per economic sector, including residential, commercial and agriculture sectors. The risk chain includes continuous simulation of high-resolution hazard maps, obtained from coupled hydrology and hydraulic models; NUTS3-level exposure asset values further disaggregated to ATKIS land-use data and calibrated object-level vulnerability models that provide high-resolution quantification of economic damage. Spatial dependence of flood events is addressed by the continuous simulation approach. For each model component in the risk assessment (hazard, exposure and vulnerability), uncertainty in data and methods are integrated into the risk predictions. Based on these simulations, we present a sector-wise flood risk assessment for Germany along with the reliability of the risk estimates. This process-based, systemic flood risk assessment is valuable for policy making, adaptation planning and estimating insurance premiums.</p>


2011 ◽  
Vol 9 (1) ◽  
pp. 10-26 ◽  
Author(s):  
Margaret Donald ◽  
Kerrie Mengersen ◽  
Simon Toze ◽  
Jatinder P.S. Sidhu ◽  
Angus Cook

Modern statistical models and computational methods can now incorporate uncertainty of the parameters used in Quantitative Microbial Risk Assessments (QMRA). Many QMRAs use Monte Carlo methods, but work from fixed estimates for means, variances and other parameters. We illustrate the ease of estimating all parameters contemporaneously with the risk assessment, incorporating all the parameter uncertainty arising from the experiments from which these parameters are estimated. A Bayesian approach is adopted, using Markov Chain Monte Carlo Gibbs sampling (MCMC) via the freely available software, WinBUGS. The method and its ease of implementation are illustrated by a case study that involves incorporating three disparate datasets into an MCMC framework. The probabilities of infection when the uncertainty associated with parameter estimation is incorporated into a QMRA are shown to be considerably more variable over various dose ranges than the analogous probabilities obtained when constants from the literature are simply ‘plugged’ in as is done in most QMRAs. Neglecting these sources of uncertainty may lead to erroneous decisions for public health and risk management.


10.1596/28574 ◽  
2017 ◽  
Author(s):  
Satya Priya ◽  
William Young ◽  
Thomas Hopson ◽  
Ankit Avasthi

MethodsX ◽  
2021 ◽  
pp. 101463
Author(s):  
Maurizio Tiepolo ◽  
Elena Belcore ◽  
Sarah Braccio ◽  
Souradji Issa ◽  
Giovanni Massazza ◽  
...  

Atmosphere ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 104 ◽  
Author(s):  
Qiang Liu ◽  
Hongmao Yang ◽  
Min Liu ◽  
Rui Sun ◽  
Junhai Zhang

Cities located in the transitional zone between Taihang Mountains and North China plain run high flood risk in recent years, especially urban waterlogging risk. In this paper, we take Shijiazhuang, which is located in this transitional zone, as the study area and proposed a new flood risk assessment model for this specific geographical environment. Flood risk assessment indicator factors are established by using the digital elevation model (DEM), along with land cover, economic, population, and precipitation data. A min-max normalization method is used to normalize the indices. An analytic hierarchy process (AHP) method is used to determine the weight of each normalized index and the geographic information system (GIS) spatial analysis tool is adopted for calculating the risk map of flood disaster in Shijiazhuang. This risk map is consistent with the reports released by Hebei Provincial Water Conservancy Bureau and can provide reference for flood risk management.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 420
Author(s):  
Zening Wu ◽  
Yuhai Cui ◽  
Yuan Guo

With the progression of climate change, the intensity and frequency of extreme rainfall have increased in many parts of the world, while the continuous acceleration of urbanization has made cities more vulnerable to floods. In order to effectively estimate and assess the risks brought by flood disasters, this paper proposes a regional flood disaster risk assessment model combining emergy theory and the cloud model. The emergy theory can measure many kinds of hazardous factor and convert them into unified solar emergy (sej) for quantification. The cloud model can transform the uncertainty in flood risk assessment into certainty in an appropriate way, making the urban flood risk assessment more accurate and effective. In this study, the flood risk assessment model combines the advantages of the two research methods to establish a natural and social dual flood risk assessment system. Based on this, the risk assessment system of the flood hazard cloud model is established. This model was used in a flood disaster risk assessment, and the risk level was divided into five levels: very low risk, low risk, medium risk, high risk, and very high risk. Flood hazard risk results were obtained by using the entropy weight method and fuzzy transformation method. As an example for the application of this model, this paper focuses on the Anyang region which has a typical continental monsoon climate. The results show that the Anyang region has a serious flood disaster threat. Within this region, Linzhou County and Anyang County have very high levels of risk for flood disaster, while Hua County, Neihuang County, Wenfeng District and Beiguan District have high levels of risk for flood disaster. These areas are the core urban areas and the economic center of local administrative regions, with 70% of the industrial clusters being situated in these regions. Only with the coordinated development of regional flood control planning, economy, and population, and reductions in the uncertainty of existing flood control and drainage facilities can the sustainable, healthy and stable development of the region be maintained.


Sign in / Sign up

Export Citation Format

Share Document