scholarly journals What determines size distributions of heavy drops in a synthetic turbulent flow?

2009 ◽  
Vol 16 (6) ◽  
pp. 677-690 ◽  
Author(s):  
J. C. Zahnow ◽  
U. Feudel

Abstract. We present results from an individual particle based model for the collision, coagulation and fragmentation of heavy drops moving in a turbulent flow. Such a model framework can help to bridge the gap between the full hydrodynamic simulation of two phase flows, which can usually only study few particles and mean field based approaches for coagulation and fragmentation relying heavily on parameterization and are for example unable to fully capture particle inertia. We study the steady state that results from a balance between coagulation and fragmentation and the impact of particle properties and flow properties on this steady state. We compare two different fragmentation mechanisms, size-limiting fragmentation where particles fragment when exceeding a maximum size and shear fragmentation, where particles break up when local shear forces in the flow exceed the binding force of the particle. For size-limiting fragmentation the steady state is mainly influenced by the maximum stable particle size, while particle and flow properties only influence the approach to the steady state. For shear fragmentation both the approach to the steady state and the steady state itself depend on the particle and flow parameters. There we find scaling relationships between the steady state and the particle and flow parameters that are determined by the stability condition for fragmentation.

2018 ◽  
Author(s):  
Robert Reinecke ◽  
Laura Foglia ◽  
Steffen Mehl ◽  
Tim Trautmann ◽  
Denise Cáceres ◽  
...  

Abstract. To quantify water flows between groundwater (GW) and surface water (SW) as well as the impact of capillary rise on evapotranspiration by global hydrological models (GHMs), it is necessary to replace the bucket-like linear GW reservoir model typical for hydrological models with a fully integrated gradient-based GW flow model. Linear reservoir models can only simulate GW discharge to SW bodies, provide no information on the location of the GW table and assume that there is no GW flow among grid cells. A gradient-based GW model simulates not only GW storage but also hydraulic head, which together with information on SW table elevation enables the quantification of water flows from GW to SW and vice versa. In addition, hydraulic heads are the basis for calculating lateral GW flow among grid cells and capillary rise. G3M is a new global gradient-based GW model with a spatial resolution of 5' that will replace the current linear GW reservoir in the 0.5° WaterGAP Global Hydrology Model (WGHM). The newly developed model framework enables in-memory coupling to WGHM while keeping overall runtime relatively low, allowing sensitivity analyses and data assimilation. This paper presents the G3M concept and specific model design decisions together with results under steady-state naturalized conditions, i.e. neglecting GW abstractions. Cell-specific conductances of river beds, which govern GW-SW interaction, were determined based on the 30'' steady-state water table computed by Fan et al. (2013). Together with an appropriate choice for the effective elevation of the SW table within each grid cell, this enables a reasonable simulation of drainage from GW to SW such that, in contrast to the GW model of de Graaf et al. (2015, 2017), no additional drainage based on externally provided values for GW storage above the floodplain is required in G3M. Comparison of simulated hydraulic heads to observations around the world shows better agreement than de Graaf et al. (2015). In addition, G3M output is compared to the output of two established macro-scale models for the Central Valley, California, and the continental United States, respectively. As expected, depth to GW table is highest in mountainous and lowest in flat regions. A first analysis of losing and gaining rivers and lakes/wetlands indicates that GW discharge to rivers is by far the dominant flow, draining diffuse GW recharge, such that lateral flows only become a large fraction of total diffuse and focused recharge in case of losing rivers and some areas with very low GW recharge. G3M does not represent losing rivers in some dry regions. This study presents the first steps towards replacing the linear GW reservoir model in a GHM while improving on recent efforts, demonstrating the feasibility of the approach and the robustness of the newly developed framework.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5709
Author(s):  
Krystian Czernek ◽  
Stanisław Witczak

This paper presents the results of analyses of the impact of heat transfer conditions on the hydrodynamics of downward co-current annular flow in vertical tubes of very viscous liquid and gas. The research was conducted within the range of gas velocities of 0–30.0 m/s and liquid velocities of 0.001–0.254 m/s, while the viscosity was in the unprecedented range of 0.046–3.5 Pas. The research demonstrates that the volume and nature of the liquid waves with various amplitudes and frequencies arising on the surface of the film are relative to the flow rate and viscosity of the gas phase. At the same time, we found that, under the condition of liquid cooling, an increase in viscosity resulted in the formation of a smooth interface whereas, under the conditions where the liquid is heated at the end of the channel section, a greater number of capillary waves were formed. This research resulted in the development of new dependencies which take into account the influence of selected thermal and flow parameters (including mass fraction) on the values of volumes specific to very viscous liquid film flows. These dependencies improve the accuracy of calculation by 8–10% and are fully applicable to the description of the performance of an apparatus with a hydraulically generated liquid film.


Author(s):  
Wilson W. S. Hii ◽  
Donna J. Michalek

As the use of fuel injection in spark ignition engines has increased, continuous refinements in the design of fuel injectors are needed in order to obtain lower engine emissions and increased performance. In this endeavor, computational fluid dynamics (CFD) has been used as a means of gaining an understanding of the flow through the injector, and also as a valuable tool in the design process. Most CFD models constructed to study injector flow utilize the standard k-ε turbulence model and perform steady state calculations with the fuel injector needle held in a fixed position. The objectives of this research were to determine the appropriate turbulence model for this flow situation and the accuracy of using a steady state analysis to simulate the transient flow in an operational fuel injector. An evaluation of three turbulence models was performed. The standard k-ε, along with the Renormalisation Group (RNG) and the Chen modifications of the k-ε scheme were used to obtain steady state flow results for a fuel injector in the fully open position. Star-CD was used to perform the simulations of two fuel injectors containing Ford compound nozzles, which are specifically designed to generate turbulent flow just upstream of the injector exit. This comparison resulted in the determination of an appropriate turbulence model, which was then used in a transient CFD simulation of the injector. In addition to the transient simulation, which modeled the opening and closing processes, four steady state simulations were performed at different needle lift positions. The results obtained from these steady state simulations were compared to those from the transient simulation at the same needle lift positions. In all cases, the flow properties used for the comparisons were the fluid velocity, the turbulent kinetic energy, and the turbulent dissipation in the nozzle exit plane. This location was chosen because of its influence on the spray dispersion and droplet size distribution produced by the injector. From the turbulence model study it was determined that the Renormalisation group and Chen’s modifications schemes were preferred over the standard k-ε scheme for predicting the turbulent flow properties. Comparisons between the transient and steady state simulation results clearly illustrated that the rapid movement of the pintle needle during the opening and closing processes greatly influences the flow at the injector exit. From these observations, it was determined that a fuel injector can operate entirely within the transient mode. Therefore, it was concluded that a transient simulation is the preferred method to use for injector analysis.


2012 ◽  
Author(s):  
D. Silin ◽  
J. Ajo-Franklin ◽  
J. O. Helland ◽  
E. Jettestuen ◽  
D. G. Hatzignatiou

2017 ◽  
Vol 38 (3) ◽  
pp. 411-422
Author(s):  
Katarzyna Bizon

Abstract Steady-state characteristics of a catalytic fluidised bed reactor and its dynamical consequences are analyzed. The occurrence of an untypical steady-state structure manifesting in a form of multiple isolas is described. A two-phase bubbling bed model is used for a quantitative description of the bed of catalyst. The influence of heat exchange intensity and a fluidisation ratio onto the generation of isolated solution branches is presented for two kinetic schemes. Dynamical consequences of the coexistence of such untypical branches of steady states are presented. The impact of linear growth of the fluidisation ratio and step change of the cooling medium temperature onto the desired product yield is analyzed. The results presented in this study confirm that the identification of a region of the occurrence of multiple isolas is important due to their strong impact both on the process start-up and its control.


1996 ◽  
Vol 6 (2) ◽  
pp. 211-225 ◽  
Author(s):  
Keh-Chin Chang ◽  
Wen-Jing Wu ◽  
Muh-Rong Wang

Author(s):  
Kumari Anshu ◽  
Loveleen Gaur ◽  
Arun Solanki

Chatbot has emerged as a significant resolution to the swiftly growing customer caredemands in recent times. Chatbot has emerged as one of the biggest technological disruption. Simply speaking, it is a software agent facilitating interaction between computers and humans in natural language. So basically, it is a simulated, intellectual dialogue agent functional in a range of consumer engagement circumstances. It is the easiest and simplest means enable interaction between the retailers and the customers. </p><p> • Purpose- Most of the research work done in this field is concerned with their technical aspects. The recent research on chatbot pay little attention to the impact it is creating on users’ experience. Through this work, author is making an effort to know the customer-oriented impact that the chatbot bear on the shoppers. The purpose of this study is to develop and empirically test a framework that identify the customer oriented attributes of chatbot and impact of these attributes on customers. </p><p> • Objectives- The study intends to bridge the gap between concepts and actual attributes and applications on the subject of Chatbot. The following research objectives can address the various aspects of Chatbot affecting the different characteristics of consumers shopping behaviors: a) Identify the various attributes of chatbot that bears an impression on consumer shopping behavior. b) Evaluate the impact of chatbot on consumer shopping behavior that leads to the development of chatbot usage and adoption among the customer. </p><p> • Design/Methodology/Approach – For the purpose of analysis, author has administered Factor analysis and Multiple regression using SPSS version 23 for identification of various attributes of Chatbot and knowing their impact on shoppers. A self-administered questionnaire from the review of literature is developed. Industry experts in the field of retailing and academician evaluate the questionnaire. Primary information from the respondents is gathered using this questionnaire. The questionnaire comprises of Likert scale on a scale of 1 to 5 where 1 stands for strongly disagree and 5 stands for strongly agree. Data is collected from 126 respondents, out of which 111 respondents were finally considered for study and analysis purpose. </p><p> • Findings – The empirical results show that the study identifies various attributes of chatbot like Trust, Usefulness, Satisfaction, Readiness to Use and Accessibility. It is also found that chatbot is really influencing the customers in providing them with shopping experience, which can be very helpful to the businesses for increasing the sales and creating repurchase intention among the customers. </p><p> • Originality/value – The recent research on chatbot pay little attention to the impact it is creating on customers who are actually interacting with it on regular basis. The research paper extends information for understanding and appreciating the customer oriented attributes of artificially intelligent Chatbot. In this regard, the author has developed a model framework and proposed the attributes identified. Through the work, author is also making an effort to test empirically the impact of the identified attributes on the shoppers.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 367
Author(s):  
Konstantinos Giannokostas ◽  
Yannis Dimakopoulos ◽  
Andreas Anayiotos ◽  
John Tsamopoulos

The present work focuses on the in-silico investigation of the steady-state blood flow in straight microtubes, incorporating advanced constitutive modeling for human blood and blood plasma. The blood constitutive model accounts for the interplay between thixotropy and elasto-visco-plasticity via a scalar variable that describes the level of the local blood structure at any instance. The constitutive model is enhanced by the non-Newtonian modeling of the plasma phase, which features bulk viscoelasticity. Incorporating microcirculation phenomena such as the cell-free layer (CFL) formation or the Fåhraeus and the Fåhraeus-Lindqvist effects is an indispensable part of the blood flow investigation. The coupling between them and the momentum balance is achieved through correlations based on experimental observations. Notably, we propose a new simplified form for the dependence of the apparent viscosity on the hematocrit that predicts the CFL thickness correctly. Our investigation focuses on the impact of the microtube diameter and the pressure-gradient on velocity profiles, normal and shear viscoelastic stresses, and thixotropic properties. We demonstrate the microstructural configuration of blood in steady-state conditions, revealing that blood is highly aggregated in narrow tubes, promoting a flat velocity profile. Additionally, the proper accounting of the CFL thickness shows that for narrow microtubes, the reduction of discharged hematocrit is significant, which in some cases is up to 70%. At high pressure-gradients, the plasmatic proteins in both regions are extended in the flow direction, developing large axial normal stresses, which are more significant in the core region. We also provide normal stress predictions at both the blood/plasma interface (INS) and the tube wall (WNS), which are difficult to measure experimentally. Both decrease with the tube radius; however, they exhibit significant differences in magnitude and type of variation. INS varies linearly from 4.5 to 2 Pa, while WNS exhibits an exponential decrease taking values from 50 mPa to zero.


Sign in / Sign up

Export Citation Format

Share Document