scholarly journals Nonlinear dynamics approach to the predictability of the Cane–Zebiak coupled ocean–atmosphere model

2014 ◽  
Vol 21 (1) ◽  
pp. 155-163 ◽  
Author(s):  
L. Siqueira ◽  
B. Kirtman

Abstract. The predictability of the Cane–Zebiak coupled ocean–atmosphere model is investigated using nonlinear dynamics analysis. Newer theoretical concepts are applied to the coupled model in order to help quantify maximal prediction horizons for finite amplitude perturbations on different scales. Predictability analysis based on the maximum Lyapunov exponent considers infinitesimal perturbations, which are associated with errors in the smallest fastest-evolving scales of motion. However, these errors become irrelevant for the predictability of larger scale motions. In this study we employed finite-size Lyapunov exponent analysis to assess the predictability of the Cane–Zebiak coupled ocean–atmosphere model as a function of scale. We demonstrate the existence of fast and slow timescales, as noted in earlier studies, and the expected enhanced predictability of the anomalies on large scales. The final results and conclusions clarify the applicability of these new methods to seasonal forecasting problems.

2017 ◽  
Vol 866 ◽  
pp. 164-167
Author(s):  
Sunisa Saiuparad

The pressure gradient is a physical quantity that describes in which direction and at what rate the pressure changes the most rapidly around a particular location. The meridional pressure gradient can be prediction for the main forces acting on the air to make it move as wind. The randomly selected cases for this experiment are the Asian northeast monsoon downscaling for December 2049. The global climate model is the Bjerknes Centre for Climate Research (BCCR), University of Bergen, Norway. Bergen Climate Model (BCM) Version 2.0 (BCCR-BCM2.0). The data predictions are the A2 scenario and COMMIT scenario. In this research maximum Lyapunov exponent (MLE) and finite size Lyapunov exponent (FSLE) for every 24-hr interval of the meridional pressure gradient from the BCCR-BCM2.0 model are calculated. The results show that the meridional pressure gradient prediction by the BCCR-BCM2.0 is not sensitive to scenario.


2020 ◽  
Vol 30 (12) ◽  
pp. 2030034
Author(s):  
Francis F. Franco ◽  
Erico L. Rempel

The nonlinear dynamics of a recently derived generalized Lorenz model [ Macek & Strumik, 2010 ] of magnetoconvection is studied. A bifurcation diagram is constructed as a function of the Rayleigh number where attractors and nonattracting chaotic sets coexist inside a periodic window. The nonattracting chaotic sets, also called chaotic saddles, are responsible for fractal basin boundaries with a fractal dimension near the dimension of the phase space, which causes the presence of very long chaotic transients. It is shown that the chaotic saddles can be used to infer properties of chaotic attractors outside the periodic window, such as their maximum Lyapunov exponent.


2020 ◽  
Author(s):  
Shihe Ren ◽  
Xi Liang ◽  
Qizhen Sun ◽  
Hao Yu ◽  
L. Bruno Tremblay ◽  
...  

Abstract. The implementation of a new Arctic regional coupled sea ice-ocean-atmosphere model (ArcIOAM) and its preliminary results in the year of 2012 are presented in this paper. A newly developed coupler, C-Coupler2 (the Community Coupler 2), is used to couple the Arctic sea ice-oceanic configuration of the MITgcm (Massachusetts Institute of Technology general circulation model) with the Arctic atmospheric configuration of the Polar WRF (Weather Research and Forecasting) model. ArcIOAM is demonstrated with focus on seasonal simulation of the Arctic sea ice and ocean state in the year of 2012. The results obtained by ArcIOAM, along with the experiment of one-way coupling strategy, are compared with available observational data and reanalysis products. From the comparison, results obtained from two experiments both realistically capture the sea ice and oceanic variables in the Arctic region over a 1-year simulation period. The two-way coupled model has better performance in terms of sea ice extent, concentration, thickness and SST, especially in summer. This indicates that sea ice-ocean-atmosphere interaction takes a crucial role in controlling Arctic summertime sea ice distribution. The coupled model and documentation are available at  https://doi.org/10.5281/zenodo.3742692 (last access: 9 June 2020), and the source code is maintained at  https://github.com/cdmpbp123/Coupled_Atm_Ice_Oce (last access: 7 April 2020).


Fluids ◽  
2021 ◽  
Vol 6 (10) ◽  
pp. 348
Author(s):  
Thomas Meunier ◽  
J. H. LaCasce

The finite size Lyapunov exponent (FSLE) has been used extensively since the late 1990s to diagnose turbulent regimes from Lagrangian experiments and to detect Lagrangian coherent structures in geophysical flows and two-dimensional turbulence. Historically, the FSLE was defined in terms of its computational method rather than via a mathematical formulation, and the behavior of the FSLE in the turbulent inertial ranges is based primarily on scaling arguments. Here, we propose an exact definition of the FSLE based on conditional averaging of the finite amplitude growth rate (FAGR) of the particle pair separation. With this new definition, we show that the FSLE is a close proxy for the inverse structural time, a concept introduced a decade before the FSLE. The (in)dependence of the FSLE on initial conditions is also discussed, as well as the links between the FAGR and other relevant Lagrangian metrics, such as the finite time Lyapunov exponent and the second-order velocity structure function.


2019 ◽  
Vol 12 (10) ◽  
pp. 4221-4244
Author(s):  
Rui Sun ◽  
Aneesh C. Subramanian ◽  
Arthur J. Miller ◽  
Matthew R. Mazloff ◽  
Ibrahim Hoteit ◽  
...  

Abstract. A new regional coupled ocean–atmosphere model is developed and its implementation is presented in this paper. The coupled model is based on two open-source community model components: the MITgcm ocean model and the Weather Research and Forecasting (WRF) atmosphere model. The coupling between these components is performed using ESMF (Earth System Modeling Framework) and implemented according to National United Operational Prediction Capability (NUOPC) protocols. The coupled model is named the Scripps–KAUST Regional Integrated Prediction System (SKRIPS). SKRIPS is demonstrated with a real-world example by simulating a 30 d period including a series of extreme heat events occurring on the eastern shore of the Red Sea region in June 2012. The results obtained by using the coupled model, along with those in forced stand-alone oceanic or atmospheric simulations, are compared with observational data and reanalysis products. We show that the coupled model is capable of performing coupled ocean–atmosphere simulations, although all configurations of coupled and uncoupled models have good skill in modeling the heat events. In addition, a scalability test is performed to investigate the parallelization of the coupled model. The results indicate that the coupled model code scales well and the ESMF/NUOPC coupler accounts for less than 5 % of the total computational resources in the Red Sea test case. The coupled model and documentation are available at https://library.ucsd.edu/dc/collection/bb1847661c (last access: 26 September 2019), and the source code is maintained at https://github.com/iurnus/scripps_kaust_model (last access: 26 September 2019).


2018 ◽  
Author(s):  
Rui Sun ◽  
Aneesh Subramanian ◽  
Art Miller ◽  
Matt Mazloff ◽  
Ibrahim Hoteit ◽  
...  

Abstract. A new regional coupled ocean–atmosphere model is developed to study air–sea feedbacks. The coupled model is based on two open-source community model components: (1) MITgcm ocean model; (2) Weather Research and Forecasting (WRF) atmosphere model. The coupling between these components is performed using ESMF (Earth System Modeling Framework) and implemented according to National United Operational Prediction Capability (NUOPC) consortium. The regional coupled model allows affordable simulation where oceanic mixed layer heat and momentum interact with atmospheric boundary layer dynamics at mesoscale and higher resolution. This can capture the feedbacks which are otherwise not well-resolved in coarse resolution global coupled models and are absent in regional uncoupled models. To test the regional coupled model, we focus on a series of heat wave events that occurred on the eastern shore of the Red Sea region in June 2012 using a 30-day simulation. The results obtained using the coupled model, along with those in forced uncoupled ocean or atmosphere model simulations, are compared with observational and reanalysis data. All configurations of coupled and uncoupled models have good skill in modeling variables of interest in the region. The coupled model shows improved skill in temperature and circulation evaluation metrics. In addition, a scalability test is performed to investigate the parallelization of the coupled model. The results indicate that the coupled model scales linearly for up to 128 CPUs and sublinearly for more processors. In the coupled simulation, the ESMF/NUOPC interface also scales well and accounts for less than 10 % of the total computational resources compared with uncoupled models. Hence this newly developed regional model scales efficiently for a large number of processors and can be applied for high-resolution coupled regional modeling studies.


Author(s):  
Thomas Meunier ◽  
J.H. LaCasce

The Finite size Lyapunov exponent (FSLE) has been used extensively since the late 1990’s to diagnose turbulent regimes from Lagrangian experiments and to detect Lagrangian coherent structures in geophysical flows and two-dimensional turbulence. Historically, the FSLE was defined in terms of its computational method rather than via a mathematical formulation, and the behavior of the FSLE in the turbulent inertial ranges is based primarily on scaling arguments. Here we propose an exact definition of the FSLE based on conditional averaging of the finite amplitude growth rate (FAGR) of the particle pair separation. With this new definition, we show that the FSLE is a close proxy for the inverse structural time, a concept introduced a decade before the FSLE. The (in)dependence of the FSLE on initial conditions is also discussed, as well as the links between the FAGR and other relevant Lagrangian metrics, such as the finite time Lyapunov exponent and the second order velocity structure function.


Author(s):  
Athina Bougioukou

The intention of this research is to investigate the aspect of non-linearity and chaotic behavior of the Cyprus stock market. For this purpose, we use non-linearity and chaos theory. We perform BDS, Hinich-Bispectral tests and compute Lyapunov exponent of the Cyprus General index. The results show that existence of non-linear dependence and chaotic features as the maximum Lyapunov exponent was found to be positive. This study is important because chaos and efficient market hypothesis are mutually exclusive aspects. The efficient market hypothesis which requires returns to be independent and identically distributed (i.i.d.) cannot be accepted.


Sign in / Sign up

Export Citation Format

Share Document