scholarly journals A regional coupled ocean–atmosphere modeling framework (MITgcm–WRF) using ESMF/NUOPC: description and preliminary results for the Red Sea

Author(s):  
Rui Sun ◽  
Aneesh Subramanian ◽  
Art Miller ◽  
Matt Mazloff ◽  
Ibrahim Hoteit ◽  
...  

Abstract. A new regional coupled ocean–atmosphere model is developed to study air–sea feedbacks. The coupled model is based on two open-source community model components: (1) MITgcm ocean model; (2) Weather Research and Forecasting (WRF) atmosphere model. The coupling between these components is performed using ESMF (Earth System Modeling Framework) and implemented according to National United Operational Prediction Capability (NUOPC) consortium. The regional coupled model allows affordable simulation where oceanic mixed layer heat and momentum interact with atmospheric boundary layer dynamics at mesoscale and higher resolution. This can capture the feedbacks which are otherwise not well-resolved in coarse resolution global coupled models and are absent in regional uncoupled models. To test the regional coupled model, we focus on a series of heat wave events that occurred on the eastern shore of the Red Sea region in June 2012 using a 30-day simulation. The results obtained using the coupled model, along with those in forced uncoupled ocean or atmosphere model simulations, are compared with observational and reanalysis data. All configurations of coupled and uncoupled models have good skill in modeling variables of interest in the region. The coupled model shows improved skill in temperature and circulation evaluation metrics. In addition, a scalability test is performed to investigate the parallelization of the coupled model. The results indicate that the coupled model scales linearly for up to 128 CPUs and sublinearly for more processors. In the coupled simulation, the ESMF/NUOPC interface also scales well and accounts for less than 10 % of the total computational resources compared with uncoupled models. Hence this newly developed regional model scales efficiently for a large number of processors and can be applied for high-resolution coupled regional modeling studies.

2019 ◽  
Vol 12 (10) ◽  
pp. 4221-4244
Author(s):  
Rui Sun ◽  
Aneesh C. Subramanian ◽  
Arthur J. Miller ◽  
Matthew R. Mazloff ◽  
Ibrahim Hoteit ◽  
...  

Abstract. A new regional coupled ocean–atmosphere model is developed and its implementation is presented in this paper. The coupled model is based on two open-source community model components: the MITgcm ocean model and the Weather Research and Forecasting (WRF) atmosphere model. The coupling between these components is performed using ESMF (Earth System Modeling Framework) and implemented according to National United Operational Prediction Capability (NUOPC) protocols. The coupled model is named the Scripps–KAUST Regional Integrated Prediction System (SKRIPS). SKRIPS is demonstrated with a real-world example by simulating a 30 d period including a series of extreme heat events occurring on the eastern shore of the Red Sea region in June 2012. The results obtained by using the coupled model, along with those in forced stand-alone oceanic or atmospheric simulations, are compared with observational data and reanalysis products. We show that the coupled model is capable of performing coupled ocean–atmosphere simulations, although all configurations of coupled and uncoupled models have good skill in modeling the heat events. In addition, a scalability test is performed to investigate the parallelization of the coupled model. The results indicate that the coupled model code scales well and the ESMF/NUOPC coupler accounts for less than 5 % of the total computational resources in the Red Sea test case. The coupled model and documentation are available at https://library.ucsd.edu/dc/collection/bb1847661c (last access: 26 September 2019), and the source code is maintained at https://github.com/iurnus/scripps_kaust_model (last access: 26 September 2019).


2011 ◽  
Vol 139 (6) ◽  
pp. 1785-1808 ◽  
Author(s):  
R. J. Small ◽  
T. Campbell ◽  
J. Teixeira ◽  
S. Carniel ◽  
T. A. Smith ◽  
...  

Abstract In situ experimental data and numerical model results are presented for the Ligurian Sea in the northwestern Mediterranean. The Ligurian Sea Air–Sea Interaction Experiment (LASIE07) and LIGURE2007 experiments took place in June 2007. The LASIE07 and LIGURE2007 data are used to validate the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS)1 developed at the Naval Research Laboratory. This system includes an atmospheric sigma coordinate, nonhydrostatic model, coupled to a hydrostatic sigma-z-level ocean model (Navy Coastal Ocean Model), using the Earth System Modeling Framework (ESMF). A month-long simulation, which includes data assimilation in the atmosphere and full coupling, is compared against an uncoupled run where analysis SST is used for computation of the bulk fluxes. This reveals that COAMPS has reasonable skill in predicting the wind stress and surface heat fluxes at LASIE07 mooring locations in shallow and deep water. At the LASIE07 coastal site (but not at the deep site) the validation shows that the coupled model has a much smaller bias in latent heat flux, because of improvements in the SST field relative to the uncoupled model. This in turn leads to large differences in upper-ocean temperature between the coupled model and an uncoupled ocean model run.


2009 ◽  
Vol 22 (10) ◽  
pp. 2541-2556 ◽  
Author(s):  
Malcolm J. Roberts ◽  
A. Clayton ◽  
M.-E. Demory ◽  
J. Donners ◽  
P. L. Vidale ◽  
...  

Abstract Results are presented from a matrix of coupled model integrations, using atmosphere resolutions of 135 and 90 km, and ocean resolutions of 1° and 1/3°, to study the impact of resolution on simulated climate. The mean state of the tropical Pacific is found to be improved in the models with a higher ocean resolution. Such an improved mean state arises from the development of tropical instability waves, which are poorly resolved at low resolution; these waves reduce the equatorial cold tongue bias. The improved ocean state also allows for a better simulation of the atmospheric Walker circulation. Several sensitivity studies have been performed to further understand the processes involved in the different component models. Significantly decreasing the horizontal momentum dissipation in the coupled model with the lower-resolution ocean has benefits for the mean tropical Pacific climate, but decreases model stability. Increasing the momentum dissipation in the coupled model with the higher-resolution ocean degrades the simulation toward that of the lower-resolution ocean. These results suggest that enhanced ocean model resolution can have important benefits for the climatology of both the atmosphere and ocean components of the coupled model, and that some of these benefits may be achievable at lower ocean resolution, if the model formulation allows.


2016 ◽  
Vol 9 (10) ◽  
pp. 3655-3670 ◽  
Author(s):  
Helene T. Hewitt ◽  
Malcolm J. Roberts ◽  
Pat Hyder ◽  
Tim Graham ◽  
Jamie Rae ◽  
...  

Abstract. There is mounting evidence that resolving mesoscale eddies and western boundary currents as well as topographically controlled flows can play an important role in air–sea interaction associated with vertical and lateral transports of heat and salt. Here we describe the development of the Met Office Global Coupled Model version 2 (GC2) with increased resolution relative to the standard model: the ocean resolution is increased from 1/4 to 1/12° (28 to 9 km at the Equator), the atmosphere resolution increased from 60 km (N216) to 25 km (N512) and the coupling period reduced from 3 hourly to hourly. The technical developments that were required to build a version of the model at higher resolution are described as well as results from a 20-year simulation. The results demonstrate the key role played by the enhanced resolution of the ocean model: reduced sea surface temperature (SST) biases, improved ocean heat transports, deeper and stronger overturning circulation and a stronger Antarctic Circumpolar Current. Our results suggest that the improvements seen here require high resolution in both atmosphere and ocean components as well as high-frequency coupling. These results add to the body of evidence suggesting that ocean resolution is an important consideration when developing coupled models for weather and climate applications.


2016 ◽  
Author(s):  
Helene T. Hewitt ◽  
Malcolm J. Roberts ◽  
Pat Hyder ◽  
Tim Graham ◽  
Jamie Rae ◽  
...  

Abstract. There is mounting evidence that resolving mesoscale eddies and boundary currents in the surface ocean field can play an important role in air-sea interaction associated with vertical and lateral transports of heat and salt. Here we describe the development of the Met Office Global Coupled Model version 2 (GC2) with increased resolution relative to the standard model: the ocean resolution is increased from 1/4° to 1/12° (28 km to 9 km at the Equator), the atmosphere resolution increased from 60 km (N216) to 25 km (N512) and the coupling frequency increased from 3-hourly to hourly. The technical developments that were required to build a version of the model at higher resolution are described as well as results from a 20 year simulation. The results demonstrate the key role played by the enhanced resolution of the ocean model: reduced Sea Surface Temperature biases, improved ocean heat transports, deeper and stronger overturning circulation and a stronger Antarctic Circumpolar Current. Our results suggest that the improvements seen here require high resolution in both atmosphere and ocean components as well as high frequency coupling. These results add to the body of evidence suggesting that ocean resolution is an important consideration when developing coupled models for weather and climate applications.


2019 ◽  
Author(s):  
Lars Nerger ◽  
Qi Tang ◽  
Longjiang Mu

Abstract. Data assimilation integrates information from observational measurements with numerical models. When used with coupled models of Earth system compartments, e.g. the atmosphere and the ocean, consistent joint states can be estimated. A common approach for data assimilation are ensemble-based methods which use an ensemble of state realizations to estimate the state and its uncertainty. These methods are far more costly to compute than a single coupled model because of the required integration of the ensemble. However, with uncoupled models, the methods also have been shown to exhibit a particularly good scaling behavior. This study discusses an approach to augment a coupled model with data assimilation functionality provided by the Parallel Data Assimilation Framework (PDAF). Using only minimal changes in the codes of the different compartment models, a particularly efficient data assimilation system is generated that utilizes parallelization and in-memory data transfers between the models and the data assimilation functions and hence avoids most of the filter reading and writing and also model restarts during the data assimilation process. The study explains the required modifications of the programs on the example of the coupled atmosphere-sea ice-ocean model AWI-CM. Using the case of the assimilation of oceanic observations shows that the data assimilation leads only small overheads in computing time of about 15 % compared to the model without data assimilation and a very good parallel scalability. The model-agnostic structure of the assimilation software ensures a separation of concerns in that the development of data assimilation methods and be separated from the model application.


2020 ◽  
Author(s):  
Mingkui Li ◽  
Shaoqing Zhang

<p>A regional coupled prediction system for the Asia-Pacific area (AP-RCP) has been established. The AP-RCP system consists of WRF-ROMS (Weather Research and Forecast and Regional Ocean Model System) coupled models combined with local observing information through dynamically downscaling coupled data assimilation. The system generates 18-day atmospheric and oceanic environment forecasts on a daily quasi-operational schedule at Qingdao Pilot National Laboratory for Marine Science and Technology (QNLM). The AP-RCP system mainly includes 2 different coupled model resolutions: 27km WRF coupled with 9km ROMS, and 9km WRF coupled with 3km ROMS. This study evaluates the impact of enhancing coupled model resolution on the extended-range forecasts, focusing on forecasts of typhoon onset, and improved precipitation and typhoon intensity forecasts. Results show that enhancing coupled model resolution is a necessary step to realize the extended-range predictability of the atmosphere and ocean environmental conditions that include a plenty of local details. The next challenges include improving the planetary boundary physics and the representation of air-sea and air-land interactions when the model can resolve the kilometer or sub-kilometer processes.</p>


A low-resolution version of the European Centre for Medium Range Weather Forecasts global atmosphere model has been coupled to a global ocean model developed at the Max Planck Institut in Hamburg. The atmosphere model is driven by the sea surface temperature and the ice thickness calculated by the ocean model, which, in turn, is driven by the wind stress, the heat flux and the fresh-water flux diagnosed by the atmosphere model. Even though each model reaches stationarity when integrated on its own, the coupling of both creates problems, because the fields calculated by each model are not consistent with those the other model has to have to stay stationary, as some of the fluxes are not balanced. In the coupled experiment the combined ocean-atmosphere system drifts towards a colder state. To counteract this problem a flux correction has been applied, which balances the mean biases of each model. This method makes the climate drift of the coupled model smaller, but additional work has to be done to perfect this method.


2020 ◽  
Author(s):  
Pierre-Vincent Huot ◽  
Thierry Fichefet ◽  
Christoph Kittel ◽  
Nicolas Jourdain ◽  
Xavier Fettweis

<p>Coastal polynyas of the Southern Ocean, such as the Mertz Glacier Polynya, are paramount features of the polar climate. They allow for exchanges of heat, momentum and moisture between the atmosphere and ocean where sea ice usually prevents such interactions. Polynyas are believed to have a profound impact on polar and global climate, thanks to their sustained sea ice production and the associated formation of Dense Shelf Waters. Less is known, however, about the impact of polynyas on the atmosphere. Changes in air properties and winds induced by heat and moisture flux could for instance affect precipitation regime over the ice sheet or sea ice. As the formation and evolution of coastal polynyas are tied to the state of the atmosphere, such changes can also induce important feedbacks to polynyas dynamics. Such processes have almost never been studied, whether on the field or with the help of coupled models. Here, we propose to describe the behavior of a coastal polynya and its relationship with the ocean and atmosphere. To do so, we developed a regional coupled model of the ocean, sea ice and atmosphere (including interactive basal melt of ice shelves) and applied it to the Adélie Land area, in East Antarctica. The dynamics of the Mertz Glacier Polynya is described, together with its impact on the atmosphere, sea ice growth, dense water production and ice shelf melt. To assess the importance of potential feedbacks, we compare the dynamics of the polynya from the coupled model to a forced ocean-sea ice model. We then use the regional coupled model to investigate the implications of the Mertz ice tongue calving in early 2010 which led to a drastic decrease of the Mertz Glacier Polynya extent. This experiment aims at investigating the sensitivity of the atmosphere to the activity of the polynya and to evaluate the impact of the calving on regional climate. This work improves the understanding of the Mertz Glacier Polynya dynamics, and of the impact of coastal polynyas on polar climate. It also constitutes an additional step in the modelling of the polar regions in Earth System Models.</p>


2011 ◽  
Vol 68 (5) ◽  
pp. 898-911 ◽  
Author(s):  
Alistair J. Hobday ◽  
Jason R. Hartog ◽  
Claire M. Spillman ◽  
Oscar Alves

Capture of the target, bycatch, and protected species in fisheries is often regulated through spatial measures that partition fishing effort, including areal closures. In eastern Australian waters, southern bluefin tuna (SBT, Thunnus maccoyii ) are a quota-limited species in a multispecies longline fishery; minimizing capture by nonquota holders is an important management concern. A habitat preference model (conditioned with electronic tag data) coupled with ocean reanalysis data has been used since 2003 to generate real-time predicted maps of SBT distribution (nowcasts). These maps are used by fishery managers to restrict fisher access to areas with high predicted SBT distribution. Here we use the coupled ocean–atmosphere model, POAMA (predictive ocean atmosphere model for Australia), and a habitat model to forecast SBT distribution at lead times of up to 4 months. These forecasts are comparable with nowcasts derived from the operational system, and show skill in predicting SBT habitat boundaries out to lead-times of 3–4 months. For this fishery, seasonal forecasts can provide managers and fishers with valuable insights into future habitat distributions for the upcoming months, to better inform operational decisions.


Sign in / Sign up

Export Citation Format

Share Document