scholarly journals Dynamical implications of prescribing part of a coupled system: Results from a low-order model

1998 ◽  
Vol 5 (3) ◽  
pp. 167-179 ◽  
Author(s):  
A. T. Wittenberg ◽  
J. L. Anderson

Abstract. It is a common procedure in climate modelling to specify dynamical system components from an external source; a prominent example is the forcing of an atmospheric model with observed sea surface temperatures. In this paper, we examine the dynamics of such forced models using a simple prototype climate system. A particular fully coupled run of the model is designated the "true" solution, and an ensemble of perturbed initial states is generated by adding small errors to the "true" initial state. The perturbed ensemble is then integrated for the same period as the true solution, using both the fully-coupled model and a model in which the ocean is prescribed exactly from the true solution at every time step. Although the prescribed forcing is error-free, the forced-atmosphere ensemble is shown to converge to spurious solutions. Statistical tests show that neither the time-mean state nor the variability of the forced ensemble is consistent with the fully-coupled system. A stability analysis reveals the source of the inconsistency, and suggests that such behaviour may be a more general feature of models with prescribed subsystems. Possible implications for model validation and predictability are discussed.

2016 ◽  
Vol 144 (10) ◽  
pp. 4007-4030 ◽  
Author(s):  
Alison M. Fowler ◽  
Amos S. Lawless

Atmosphere-only and ocean-only variational data assimilation (DA) schemes are able to use window lengths that are optimal for the error growth rate, nonlinearity, and observation density of the respective systems. Typical window lengths are 6–12 h for the atmosphere and 2–10 days for the ocean. However, in the implementation of coupled DA schemes it has been necessary to match the window length of the ocean to that of the atmosphere, which may potentially sacrifice the accuracy of the ocean analysis in order to provide a more balanced coupled state. This paper investigates how extending the window length in the presence of model error affects both the analysis of the coupled state and the initialized forecast when using coupled DA with differing degrees of coupling. Results are illustrated using an idealized single-column model of the coupled atmosphere–ocean system. It is found that the analysis error from an uncoupled DA scheme can be smaller than that from a coupled analysis at the initial time, due to faster error growth in the coupled system. However, this does not necessarily lead to a more accurate forecast due to imbalances in the coupled state. Instead coupled DA is more able to update the initial state to reduce the impact of the model error on the accuracy of the forecast. The effect of model error is potentially most detrimental in the weakly coupled formulation due to the inconsistency between the coupled model used in the outer loop and uncoupled models used in the inner loop.


2005 ◽  
Vol 12 (5) ◽  
pp. 741-753 ◽  
Author(s):  
K. M. Nordstrom ◽  
V. K. Gupta ◽  
T. N. Chase

Abstract. We present the construction of a dynamic area fraction model (DAFM), representing a new class of models for an earth-like planet. The model presented here has no spatial dimensions, but contains coupled parameterizations for all the major components of the hydrological cycle involving liquid, solid and vapor phases. We investigate the nature of feedback processes with this model in regulating Earth's climate as a highly nonlinear coupled system. The model includes solar radiation, evapotranspiration from dynamically competing trees and grasses, an ocean, an ice cap, precipitation, dynamic clouds, and a static carbon greenhouse effect. This model therefore shares some of the characteristics of an Earth System Model of Intermediate complexity. We perform two experiments with this model to determine the potential effects of positive and negative feedbacks due to a dynamic hydrological cycle, and due to the relative distribution of trees and grasses, in regulating global mean temperature. In the first experiment, we vary the intensity of insolation on the model's surface both with and without an active (fully coupled) water cycle. In the second, we test the strength of feedbacks with biota in a fully coupled model by varying the optimal growing temperature for our two plant species (trees and grasses). We find that the negative feedbacks associated with the water cycle are far more powerful than those associated with the biota, but that the biota still play a significant role in shaping the model climate. third experiment, we vary the heat and moisture transport coefficient in an attempt to represent changing atmospheric circulations.


2014 ◽  
Vol 7 (2) ◽  
pp. 479-493 ◽  
Author(s):  
M.-P. Moine ◽  
S. Valcke ◽  
B. N. Lawrence ◽  
C. Pascoe ◽  
R. W. Ford ◽  
...  

Abstract. There are three key components for developing a metadata system: a container structure laying out the key semantic issues of interest and their relationships; an extensible controlled vocabulary providing possible content; and tools to create and manipulate that content. While metadata systems must allow users to enter their own information, the use of a controlled vocabulary both imposes consistency of definition and ensures comparability of the objects described. Here we describe the controlled vocabulary (CV) and metadata creation tool built by the METAFOR project for use in the context of describing the climate models, simulations and experiments of the fifth Coupled Model Intercomparison Project (CMIP5). The CV and resulting tool chain introduced here is designed for extensibility and reuse and should find applicability in many more projects.


2013 ◽  
Vol 6 (2) ◽  
pp. 2967-3001 ◽  
Author(s):  
M.-P. Moine ◽  
S. Valcke ◽  
B. N. Lawrence ◽  
C. Pascoe ◽  
R. W. Ford ◽  
...  

Abstract. There are three key components for developing a metadata system: a container structure laying out the key semantic issues of interest and their relationships; an extensible controlled vocabulary providing possible content; and tools to create and manipulate that content. While metadata systems must allow users to enter their own information, the use of a controlled vocabulary both imposes consistency of definition and ensures comparability of the objects described. Here we describe the controlled vocabulary (CV) and metadata creation tool built by the METAFOR project for use in the context of describing the climate models, simulations and experiments of the fifth Coupled Model Intercomparison Project (CMIP5). The CV and resulting tool chain introduced here is designed for extensibility and re-use and should find applicability in many more projects.


2013 ◽  
Vol 45 (3) ◽  
pp. 504-514 ◽  
Author(s):  
Fábio Farias Pereira ◽  
Marcio A. E. de Moraes ◽  
Cintia Bertacchi Uvo

This work describes the two-way coupling performed between the regional atmospheric model Brazilian Regional Atmospheric Modeling System (BRAMS) and the hydrological model MGB-IPH. As a first step of the atmosphere-hydrology coupling, only the water balance variables were coupled. Differences in temporal and spatial scales between MGH-IPH and BRAMS were analyzed. By default, MGB-IPH has a daily time step whereas BRAMS uses smaller time steps. Thus, accumulated rainfall values from BRAMS were used to feed MGB-IPH. On the other hand, daily values of evapotranspiration from MGB-IPH were provided to BRAMS. This procedure was assumed as a daily loop in the simulations. Differences in spatial scales were avoided by using the same grid size (10 × 10 km) in both models, in such a way that neither upscaling nor downscaling was necessary. The coupled system was tested for the Rio Grande basin situated in south-eastern Brazil by comparing results from BRAMS with results from the coupled system for the same period, with the same input data. Outputs from the runs were compared to water vapor satellite images. The results from the coupled model tests indicated that its predictions of rainfall distribution were more accurate than BRAMS.


2021 ◽  
Author(s):  
Innocent C. Chomba ◽  
Kawawa Banda ◽  
Hessel Winsemius ◽  
Eunice Makungu ◽  
Dennis Hughes ◽  
...  

<p>Floodplains play important roles in global hydrological and biogeochemical cycles, and many socioeconomic activities also depend on water resources in floodplains. Although considered as critical for the formation and preservation of floodplains, hydrology in floodplains has been hard to characterise. In recent years the demand for an understanding of the hydrological and hydrodynamic processes for the Barotse floodplains is ever increasing especially with the advent of climate change/variability, and expected upstream developments. Yet, the multi-way interactions between river flows, wetland inundation, and groundwater are complex, and poorly understood, compromising studying these changes. Most hydrological and hydrodynamic models applied for large-scale hydrological and inundation modelling lack an advanced floodplain-groundwater feedback mechanism, and thus may over predict or under predict inundation extent, depth, and downstream river flow. This is because groundwater re-infiltration and evaporation from the floodplains over a longer time scale than the flood process are not accounted for.  Hence, the main objective of this current study is to show the very first attempt to a fully coupled model for the Barotse floodplain. The hypothesis is that a fully coupled model will result in larger groundwater dynamics, a slower rise of inundation, and possibly a longer recession tail. To test this hypothesis, we setup two experiments; (i) in the first experiment, WFLOW runs and feeds upstream flows into LISFLOOD. This is sort of the classic approach, and similar to earlier studies, and also does not necessarily require a time-step based coupling; (ii) in the second experiment, WFLOW runs and feeds into Lisflood_FP, and Lisflood_FP then returns water into the WFLOW model. This an experiment where we re-infiltrate water into wflow and by doing so, let groundwater levels adapt so that additional reinfiltrated water, decrease the amount of flood water, increase groundwater levels more during the wet season, and provide a higher recession tail downstream. Our model environment and experiments are available through https://github.com/Innochomba/barotse.</p>


2020 ◽  
Vol 579 ◽  
pp. 411894
Author(s):  
Valerio Apicella ◽  
Carmine Stefano Clemente ◽  
Daniele Davino ◽  
Damiano Leone ◽  
Ciro Visone

Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1639
Author(s):  
Abdelkrim Aharmouch ◽  
Brahim Amaziane ◽  
Mustapha El Ossmani ◽  
Khadija Talali

We present a numerical framework for efficiently simulating seawater flow in coastal aquifers using a finite volume method. The mathematical model consists of coupled and nonlinear partial differential equations. Difficulties arise from the nonlinear structure of the system and the complexity of natural fields, which results in complex aquifer geometries and heterogeneity in the hydraulic parameters. When numerically solving such a model, due to the mentioned feature, attempts to explicitly perform the time integration result in an excessively restricted stability condition on time step. An implicit method, which calculates the flow dynamics at each time step, is needed to overcome the stability problem of the time integration and mass conservation. A fully implicit finite volume scheme is developed to discretize the coupled system that allows the use of much longer time steps than explicit schemes. We have developed and implemented this scheme in a new module in the context of the open source platform DuMu X . The accuracy and effectiveness of this new module are demonstrated through numerical investigation for simulating the displacement of the sharp interface between saltwater and freshwater in groundwater flow. Lastly, numerical results of a realistic test case are presented to prove the efficiency and the performance of the method.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 431
Author(s):  
Junjie Ye ◽  
Hao Sun

In order to study the influence of an integration time step on dynamic calculation of a vehicle-track-bridge under high-speed railway, a vehicle-track-bridge (VTB) coupled model is established. The influence of the integration time step on calculation accuracy and calculation stability under different speeds or different track regularity states is studied. The influence of the track irregularity on the integration time step is further analyzed by using the spectral characteristic of sensitive wavelength. According to the results, the disparity among the effect of the integration time step on the calculation accuracy of the VTB coupled model at different speeds is very small. Higher speed requires a smaller integration time step to keep the calculation results stable. The effect of the integration time step on the calculation stability of the maximum vertical acceleration of each component at different speeds is somewhat different, and the mechanism of the effect of the integration time step on the calculation stability of the vehicle-track-bridge coupled system is that corresponding displacement at the integration time step is different. The calculation deviation of the maximum vertical acceleration of the car body, wheel-sets and bridge under the track short wave irregularity state are greatly increased compared with that without track irregularity. The maximum vertical acceleration of wheel-sets, rails, track slabs and the bridge under the track short wave irregularity state all show a significant declining trend. The larger the vibration frequency is, the smaller the range of integration time step is for dynamic calculation.


2021 ◽  
Vol 76 (3) ◽  
Author(s):  
Yilun Shang

AbstractIn this note, we study discrete time majority dynamics over an inhomogeneous random graph G obtained by including each edge e in the complete graph $$K_n$$ K n independently with probability $$p_n(e)$$ p n ( e ) . Each vertex is independently assigned an initial state $$+1$$ + 1 (with probability $$p_+$$ p + ) or $$-1$$ - 1 (with probability $$1-p_+$$ 1 - p + ), updated at each time step following the majority of its neighbors’ states. Under some regularity and density conditions of the edge probability sequence, if $$p_+$$ p + is smaller than a threshold, then G will display a unanimous state $$-1$$ - 1 asymptotically almost surely, meaning that the probability of reaching consensus tends to one as $$n\rightarrow \infty $$ n → ∞ . The consensus reaching process has a clear difference in terms of the initial state assignment probability: In a dense random graph $$p_+$$ p + can be near a half, while in a sparse random graph $$p_+$$ p + has to be vanishing. The size of a dynamic monopoly in G is also discussed.


Sign in / Sign up

Export Citation Format

Share Document