scholarly journals Role of the hydrological cycle in regulating the planetary climate system of a simple nonlinear dynamical model

2005 ◽  
Vol 12 (5) ◽  
pp. 741-753 ◽  
Author(s):  
K. M. Nordstrom ◽  
V. K. Gupta ◽  
T. N. Chase

Abstract. We present the construction of a dynamic area fraction model (DAFM), representing a new class of models for an earth-like planet. The model presented here has no spatial dimensions, but contains coupled parameterizations for all the major components of the hydrological cycle involving liquid, solid and vapor phases. We investigate the nature of feedback processes with this model in regulating Earth's climate as a highly nonlinear coupled system. The model includes solar radiation, evapotranspiration from dynamically competing trees and grasses, an ocean, an ice cap, precipitation, dynamic clouds, and a static carbon greenhouse effect. This model therefore shares some of the characteristics of an Earth System Model of Intermediate complexity. We perform two experiments with this model to determine the potential effects of positive and negative feedbacks due to a dynamic hydrological cycle, and due to the relative distribution of trees and grasses, in regulating global mean temperature. In the first experiment, we vary the intensity of insolation on the model's surface both with and without an active (fully coupled) water cycle. In the second, we test the strength of feedbacks with biota in a fully coupled model by varying the optimal growing temperature for our two plant species (trees and grasses). We find that the negative feedbacks associated with the water cycle are far more powerful than those associated with the biota, but that the biota still play a significant role in shaping the model climate. third experiment, we vary the heat and moisture transport coefficient in an attempt to represent changing atmospheric circulations.

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Mubashir Qayyum ◽  
Omar Khan ◽  
Thabet Abdeljawad ◽  
Naveed Imran ◽  
Muhammad Sohail ◽  
...  

In this article, a behavioral study of three-dimensional (3D) squeezing flow of nanofluids with magnetic effect in a rotating channel has been performed. Using Navier–Stokes equations along with suitable similarity transformations, a nonlinear coupled ordinary differential system has been derived which models the 3D squeezing flow of nanofluids with lower permeable stretching porous wall where the channel is also rotating. The base fluid in the channel is considered to be water that contains different nanoparticles including silicon, copper, silver, gold, and platinum. The homotopy perturbation method (HPM) is employed for the solution of highly nonlinear coupled system. For validation purpose, system of equations is also solved through the Runge–Kutta–Fehlberg (RK45) scheme and results are compared with homotopy solutions, and excellent agreement has been found between analytical and numerical results. Also, validation has been performed by finding average residual error of the coupled system. Furthermore, the effects of various parameters such as nanoparticle volume fraction, suction parameter, characteristic parameter of the flow, magnetic parameter, rotation parameter, and different types of nanoparticles are studied graphically.


2010 ◽  
Vol 23 (17) ◽  
pp. 4677-4693 ◽  
Author(s):  
John T. Fasullo

Abstract Building on recent observational evidence showing disproportionate increases in temperature and aridity over land in a warming climate, this study examines simulated land–ocean contrasts in fully coupled projections from the Third Coupled Model Intercomparison Project (CMIP3) archive. In addition to the projection of disproportionate changes in temperature and moisture over land, the analysis reveals contrasts in clouds and radiative fluxes that play a key role in the eventual equilibration of the planetary energy budget in response to forcing. Despite differences in magnitude, the nature of the feedbacks governing the land–ocean contrast are largely robust across models, notwithstanding the large intermodel differences in cloud parameterizations, and suggest the involvement of fundamental constraints. The model responses are consistent with previously proposed ideas maintaining that relative humidity (RH) over land decreases with warming because precipitation and the hydrological cycle are governed primarily by transports of moisture from the oceans, where increases in lower-tropospheric temperature and saturated humidity fail to keep pace with those over land. Here, it is argued additionally that constraints on RH imply systematic changes in the cloud distribution and radiative feedbacks over land, as decreased RH raises the lifting condensation level, even as moist instability increases, and suppresses convective clouds. This effect is shown to be particularly strong at low latitudes where the dynamical influence of competing sources of maritime deep convection may further suppress convection. It is found that as a result of the coincidence between strong warming and a muted net greenhouse feedback associated with decreases in RH and clouds, the mean increase in outgoing longwave radiation (OLR) over land (1.0 W m−2 K−1) in transient simulations at 2200 is almost double that over the ocean (0.6 W m−2 K−1), and a strong negative net top-of-atmosphere (TOA) radiative perturbation emerges as the simulations approach and attain equilibrium. However, over the oceans a positive radiative imbalance persists and the increase in water vapor and other greenhouse gases does not allow a local TOA equilibration to occur. The contrast results in an increase in the transport of energy from ocean to land relative to the twentieth century that is accompanied by lasting increases in both OLR and absorbed shortwave radiation globally. A conceptual model to describe the simulated variability is proposed that involves the following: 1) the differing albedos and lower-tropospheric lapse rates over land and ocean, 2) the nonlinearity of the saturated lapse rate in a warming environment, and 3) the disproportionate response in temperature, moisture, clouds, and radiation over land versus ocean. It is noted that while the land–ocean contrast plays a key role in achieving global radiative equilibrium, it entails disproportionate increases in temperature and aridity over land and therefore is likely to be associated with substantial environmental impacts.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1209
Author(s):  
Wei Wang ◽  
Jia Liu ◽  
Chuanzhe Li ◽  
Yuchen Liu ◽  
Fuliang Yu ◽  
...  

With the aim of improving the understanding of water exchanges in medium-scale catchments of northern China, the spatiotemporal characteristics of rainfall and several key water cycle elements e.g., soil moisture, evapotranspiration and generated runoff, were investigated using a fully coupled atmospheric-hydrologic modeling system by integrating the Weather Research and Forecasting model (WRF) and its terrestrial hydrologic component WRF-Hydro (referred to as the fully coupled WRF/WRF-Hydro). The stand-alone WRF model (referred to as WRF-only) is also used as a comparison with the fully coupled system, which was expected to produce more realistic simulations, especially rainfall, by allowing the redistribution of surface and subsurface water across the land surface. Six storm events were sorted by different spatial and temporal distribution types, and categorical and continuous indices were used to distinguish the applicability in space and time between WRF-only and the fully coupled WRF/WRF-Hydro. The temporal indices showed that the coupled WRF-Hydro could improve the time homogeneous precipitation, but for the time inhomogeneous precipitation, it might produce a larger false alarm than WRF-only, especially for the flash storm that occurred in July, 2012. The spatial indices showed a lower mean bias error in the coupled system, and presented an enhanced simulation of both space homogeneous and inhomogeneous storm events than WRF-only. In comparison with WRF-only, the fully coupled WRF/WRF-Hydro had a closer to the observations particularly in and around the storm centers. The redistributions fluctuation of spatial precipitation in the fully coupled system was highly correlated with soil moisture, and a low initial soil moisture could lead to a large spatial fluctuated range. Generally, the fully coupled system produced slightly less runoff than WRF-only, but more frequent infiltration and larger soil moisture. While terrestrial hydrologic elements differed with relatively small amounts in the average of the two catchments between WRF-only and the fully coupled WRF/WRF-Hydro, the spatial distribution of elements in the water cycle before and after coupling with WRF-Hydro was not consistent. The soil moisture, runoff and precipitation in the fully coupled system had a similar spatial trend, but evapotranspiration did not always display the same.


1998 ◽  
Vol 5 (3) ◽  
pp. 167-179 ◽  
Author(s):  
A. T. Wittenberg ◽  
J. L. Anderson

Abstract. It is a common procedure in climate modelling to specify dynamical system components from an external source; a prominent example is the forcing of an atmospheric model with observed sea surface temperatures. In this paper, we examine the dynamics of such forced models using a simple prototype climate system. A particular fully coupled run of the model is designated the "true" solution, and an ensemble of perturbed initial states is generated by adding small errors to the "true" initial state. The perturbed ensemble is then integrated for the same period as the true solution, using both the fully-coupled model and a model in which the ocean is prescribed exactly from the true solution at every time step. Although the prescribed forcing is error-free, the forced-atmosphere ensemble is shown to converge to spurious solutions. Statistical tests show that neither the time-mean state nor the variability of the forced ensemble is consistent with the fully-coupled system. A stability analysis reveals the source of the inconsistency, and suggests that such behaviour may be a more general feature of models with prescribed subsystems. Possible implications for model validation and predictability are discussed.


2015 ◽  
Vol 12 (8) ◽  
pp. 8289-8335 ◽  
Author(s):  
M. Garcia ◽  
K. Portney ◽  
S. Islam

Abstract. Human and hydrological systems are coupled: human activity impacts the hydrological cycle and hydrological conditions can, but do not always, trigger changes in human systems. Traditional modeling approaches with no feedback between hydrological and human systems typically cannot offer insight into how different patterns of natural variability or human induced changes may propagate through this coupled system. Modeling of coupled human and hydrological systems, also called socio-hydrological systems, recognizes the potential for humans to transform hydrological systems and for hydrological conditions to influence human behavior. However, this coupling introduces new challenges and existing literature does not offer clear guidance regarding the choice of modeling structure, scope, and detail. A shared understanding of important processes within the field is often used to develop hydrological models, but there is no such consensus on the relevant processes in socio-hydrological systems. Here we present a question driven process to address these challenges. Such an approach allows modeling structure, scope, and detail to remain contingent and adaptive to the question context. We demonstrate its utility by exploring a question: what is the impact of reservoir operation policy on the reliability of water supply for a growing city? Our example model couples hydrological and human systems by linking the rate of demand decreases to the past reliability to compare standard operating policy (SOP) with hedging policy (HP). The model shows that reservoir storage acts both as a buffer for variability and as a delay triggering oscillations around a sustainable level of demand. HP reduces the threshold for action thereby decreasing the delay and the oscillation effect. As a result per capita demand decreases during periods of water stress are more frequent but less drastic and the additive effect of small adjustments decreases the tendency of the system to overshoot available supplies. This distinction between the two policies was not apparent using a traditional non-coupled model.


2020 ◽  
Vol 579 ◽  
pp. 411894
Author(s):  
Valerio Apicella ◽  
Carmine Stefano Clemente ◽  
Daniele Davino ◽  
Damiano Leone ◽  
Ciro Visone

2021 ◽  
Vol 8 (1) ◽  
pp. 27-45
Author(s):  
M. M. Freitas ◽  
M. J. Dos Santos ◽  
A. J. A. Ramos ◽  
M. S. Vinhote ◽  
M. L. Santos

Abstract In this paper, we study the long-time behavior of a nonlinear coupled system of wave equations with damping terms and subjected to small perturbations of autonomous external forces. Using the recent approach by Chueshov and Lasiecka in [21], we prove that this dynamical system is quasi-stable by establishing a quasistability estimate, as consequence, the existence of global and exponential attractors is proved. Finally, we investigate the upper and lower semicontinuity of global attractors under autonomous perturbations.


Sign in / Sign up

Export Citation Format

Share Document