scholarly journals Nonlinear evolution of the parametric instability: numerical predictions versus observations in the heliosphere

2001 ◽  
Vol 8 (3) ◽  
pp. 159-166 ◽  
Author(s):  
F. Malara ◽  
L. Primavera ◽  
P. Veltri

Abstract. Low-frequency turbulence in the solar wind is characterized by a high degree of Alfvénicity close to the Sun. Cross-helicity, which is a measure of Alfvénic correlation, tends to decrease with increasing distance from the Sun at high latitudes as well as in slow-speed streams at low latitudes. In the latter case, large scale inhomogeneities (velocity shears, the heliospheric current sheet) are present, which are sources of decorrelation; yet at high latitudes, the wind is much more homogeneous, and a possible evolution mechanism is represented by the parametric instability. The parametric decay of an circularly polarized broadband Alfvén wave is then investigated, as a source of decorrelation. The time evolution is followed by numerically integrating the full set of nonlinear MHD equations, up to instability saturation. We find that, for <beta>  ~ 1, the final cross-helicity is ~ 0.5, corresponding to a partial depletion of the initial correlation. Compressive fluctuations at a moderate level are also present. Most of the spectrum is dominated by forward propagating Alfvénic fluctuations, while backscattered fluctuations dominate large scales. With increasing time, the spectra of Elsässer variables tend to approach each other. Some results concerning quantities measured in the high-latitude wind are reviewed, and a qualitative agreement with the results of the numerical model is found.

2019 ◽  
Vol 47 (1) ◽  
pp. 85-87
Author(s):  
E.V. Maiewski ◽  
R.A. Kislov ◽  
H.V. Malova ◽  
O.V. Khabarova ◽  
V.Yu. Popov ◽  
...  

A stationary axisymmetric MHD model of the solar wind has been constructed, which allows us to study the spatial distribution of the magnetic field and plasma characteristics at radial distances from 20 to 400 radii of the Sun at almost all heliolatitudes. The model takes into account the changes in the magnetic field of the Sun during a quarter of the solar cycle, when the dominant dipole magnetic field is replaced by a quadrupole. Selfconsistent solutions for the magnetic and velocity fields, plasma concentration and current density of the solar wind depending on the phase of the solar cycle are obtained. It is shown that during the domination of the dipole magnetic component in the solar wind heliospheric current sheet (HCS) is located in the equatorial plane, which is a part of the system of radial and transverse currents, symmetrical in the northern and southern hemispheres. As the relative contribution of the quadrupole component to the total magnetic field increases, the shape of the HCS becomes conical; the angle of the cone gradually decreases, so that the current sheet moves entirely to one of the hemispheres. At the same time, at high latitudes of the opposite hemisphere, a second conical HCS arises, the angle of which increases. When the quadrupole field becomes dominant (at maximum solar activity), both HCS lie on conical surfaces inclined at an angle of 35 degrees to the equator. The model describes the transition from the fast solar wind at high latitudes to the slow solar wind at low latitudes: a relatively gentle transition in the period of low solar activity gives way to more drastic when high solar activity. The model also predicts an increase in the steepness of the profiles of the main characteristics of the solar wind with an increase in the radial distance from the Sun. Comparison of the obtained dependences with the available observational data is discussed.


1994 ◽  
Vol 144 ◽  
pp. 96
Author(s):  
V. I. Makarov ◽  
V. P. Mikhailutsa ◽  
M. P. Fatianov ◽  
T. V. Stepanova

AbstractObservations of 22 solar eclipses (1914-1991) have been processed. Radial deviations of streamers in the polar and equatorial zones of the Sun in odd and even solar cycles have been studied. An essential difference of the degree of non-radiality of coronal rays at the same latitudes in odd and even cycles has been found. Deviations from the radial direction of streamers are large in the polar zones in the epoch of the maxima of even cycles and in the equatorial zones at the minima of odd cycles. Deviations from radiality at high latitudes are observed mainly in the poleward direction. The results obtained are interpreted in terms of a new model of the cycle, in which the properties of the solar magnetic field depend on the phase of a 22-year solar magnetic cycle.


2010 ◽  
Vol 7 (3) ◽  
pp. 995-1015 ◽  
Author(s):  
A.-L. Dhomps ◽  
S. Guinehut ◽  
P.-Y. Le Traon ◽  
G. Larnicol

Abstract. Differences and complementarities between Sea Level Anomalies (SLA) deduced from altimeter measurements and dynamic height anomalies (DHA) calculated from Argo in situ temperature (T) and salinity (S) profiles are globally analyzed. Compared to previous studies, Argo data allows a much better spatial coverage of all oceans and particularly the Southern Ocean, the use of salinity measurements and the use of a deeper reference level. The use of time series along the Argo float trajectories also provides a means to describe the vertical structure of the ocean both for the low frequency and the mesoscale part of the circulation. The comparison shows the very good consistency between Argo and altimeter observations. Correlations range from 0.9 in low latitudes to 0.3 in high latitudes where the contributions of deep baroclinic and barotropic signals are the largest. The study underlines the large influence of salinity observations on the consistency between altimetry and hydrographic observations. SLA/DHA consistency is thus improved by 35% (relative to the SLA minus DHA signal) by using measured S profiles instead of climatology data. The use of a deep reference level also significantly improves the correlation at mid and high latitudes. The role of seasonal signals on the correlation and regression analysis between altimeter and Argo observations is also analyzed. As they are mainly associated with the heating/cooling of surface layers, removing these large scale signals significantly reduces the correlation and impacts the geographical structure of the Argo/altimetry regression coefficients. These results emphasize the need to separate the different time and space scales in order to improve the merging of the two data sets. The study of seasonal to interannual SLA minus DHA signals finally reveals interesting signals related to deep ocean circulation variations. Future work is, however, needed to understand the observed differences and relate them to different forcing mechanisms.


2002 ◽  
Vol 20 (2) ◽  
pp. 139-150 ◽  
Author(s):  
L. Andersson ◽  
J.-E. Wahlund ◽  
J. Clemmons ◽  
B. Gustavsson ◽  
L. Eliasson

Abstract. Dispersive Alfvén wave activity is identified in four dayside auroral oval events measured by the Freja satellite. The events are characterized by ion injection, bursty electron precipitation below about 1 keV, transverse ion heating and broadband extremely low frequency (ELF) emissions below the lower hybrid cutoff frequency (a few kHz). Large-scale density depletions/cavities, as determined by the Langmuir probe measurements, and strong electrostatic emissions are often observed simultaneously. A correlation study has been carried out between the E and B field fluctuations below 64 Hz and 10 Hz, respectively, (the DC instruments upper threshold) and the characteristics of the precipitating electrons. This study revealed that the energisation of electrons is indeed related to the broadband ELF emissions and that the electrostatic component plays a predominant role during very active magnetospheric conditions. Furthermore, the effect of the ELF electromagnetic emissions on the larger scale field-aligned current systems has been investigated, and it is found that such an effect cannot be detected. Instead, the Alfvénic activity creates a local region of field-aligned currents. It is suggested that dispersive Alfvén waves set up these local field-aligned current regions and, in turn, trigger more electrostatic emissions during certain conditions. In these regions, ions are transversely heated, and large-scale density depletions/cavities may be created during especially active periods.Key words. Ionosphere (particle acceleraton; wave-particle interactions) Magnetospheric physics (auroral phenomena)


1989 ◽  
Vol 41 (1) ◽  
pp. 199-208 ◽  
Author(s):  
G. Brodin ◽  
L. Stenflo

In order to find the equations for the nonlinear energy exchange between low-frequency waves in magnetized plasmas in the presence of pressure anisotropy, we start from the Chew–Goldberger–Low equations, the isothermal MHD equations, as well as a new hybrid system of equations. The coupling coefficients describing the interaction between two Alfvén waves and one magnetosonic wave as well as the interaction between two magnetosonic waves and one Alfvén wave are deduced.


1983 ◽  
Vol 66 ◽  
pp. 437-437
Author(s):  
Robert Howard

AbstractA series of digitized synoptic observations of solar magnetic and velocity fields has been carried out at the Mount Wilson Observatory since 1967. In recent studies (Howard and LaBonte, 1980; LaBonte and Howard, 1981), the existence of slow, large-scale torsional (toroidal) oscillations of the Sun has been demonstrated. Two modes have been identified. The first is a travelling wave, symmetric about the equator, with wave number 2 per hemisphere. The pattern-alternately slower and faster than the average rotation–starts at the poles and drifts to the equator in an interval of 22 years. At any one latitude on the Sun, the period of the oscillation is 11 years, and the amplitude is 3 m s-1. The magnetic flux emergence that is seen as the solar cycle occurs on average at the latitude of one shear zone of this oscillation. The amplitude of the shear is quite constant from the polar latitudes to the equator. The other mode of torsional oscillation, superposed on the first mode, is a wave number 1 per hemisphere pattern consisting of faster than average rotation at high latitudes around solar maximum and faster than average rotation at low latitudes near solar minimum. The amplitude of the effect is about 5 m s1-. For the first mode, the close relationship in latitude between the activity-related magnetic flux eruption and the torsional shear zone suggests strongly that there is a close connection between these motions and the cycle mechanism. It has been suggested (Yoshimura, 1981; Schüssler, 1981) that the effect is caused by a subsurface Lorentz force wave resulting from the dynamo action of magnetic flux ropes. But, this seems unlikely because of the high latitudes at which the shear wave is seen to originate and the constancy of the magnitude of the shear throughout the life time of the wave.


2021 ◽  
Vol 11 (9) ◽  
pp. 3868
Author(s):  
Qiong Wu ◽  
Hairui Zhang ◽  
Jie Lian ◽  
Wei Zhao ◽  
Shijie Zhou ◽  
...  

The energy harvested from the renewable energy has been attracting a great potential as a source of electricity for many years; however, several challenges still exist limiting output performance, such as the package and low frequency of the wave. Here, this paper proposed a bistable vibration system for harvesting low-frequency renewable energy, the bistable vibration model consisting of an inverted cantilever beam with a mass block at the tip in a random wave environment and also develop a vibration energy harvesting system with a piezoelectric element attached to the surface of a cantilever beam. The experiment was carried out by simulating the random wave environment using the experimental equipment. The experiment result showed a mass block’s response vibration was indeed changed from a single stable vibration to a bistable oscillation when a random wave signal and a periodic signal were co-excited. It was shown that stochastic resonance phenomena can be activated reliably using the proposed bistable motion system, and, correspondingly, large-scale bistable responses can be generated to realize effective amplitude enlargement after input signals are received. Furthermore, as an important design factor, the influence of periodic excitation signals on the large-scale bistable motion activity was carefully discussed, and a solid foundation was laid for further practical energy harvesting applications.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1474
Author(s):  
Ruben Tapia-Olvera ◽  
Francisco Beltran-Carbajal ◽  
Antonio Valderrabano-Gonzalez ◽  
Omar Aguilar-Mejia

This proposal is aimed to overcome the problem that arises when diverse regulation devices and controlling strategies are involved in electric power systems regulation design. When new devices are included in electric power system after the topology and regulation goals were defined, a new design stage is generally needed to obtain the desired outputs. Moreover, if the initial design is based on a linearized model around an equilibrium point, the new conditions might degrade the whole performance of the system. Our proposal demonstrates that the power system performance can be guaranteed with one design stage when an adequate adaptive scheme is updating some critic controllers’ gains. For large-scale power systems, this feature is illustrated with the use of time domain simulations, showing the dynamic behavior of the significant variables. The transient response is enhanced in terms of maximum overshoot and settling time. This is demonstrated using the deviation between the behavior of some important variables with StatCom, but without or with PSS. A B-Spline neural networks algorithm is used to define the best controllers’ gains to efficiently attenuate low frequency oscillations when a short circuit event is presented. This strategy avoids the parameters and power system model dependency; only a dataset of typical variable measurements is required to achieve the expected behavior. The inclusion of PSS and StatCom with positive interaction, enhances the dynamic performance of the system while illustrating the ability of the strategy in adding different controllers in only one design stage.


Sign in / Sign up

Export Citation Format

Share Document