Influence of room modes on low-frequency transients: Theoretical modeling and numerical predictions

2019 ◽  
Vol 448 ◽  
pp. 19-33
Author(s):  
Mirosław Meissner ◽  
Krzysztof Wiśniewski
2001 ◽  
Vol 8 (3) ◽  
pp. 159-166 ◽  
Author(s):  
F. Malara ◽  
L. Primavera ◽  
P. Veltri

Abstract. Low-frequency turbulence in the solar wind is characterized by a high degree of Alfvénicity close to the Sun. Cross-helicity, which is a measure of Alfvénic correlation, tends to decrease with increasing distance from the Sun at high latitudes as well as in slow-speed streams at low latitudes. In the latter case, large scale inhomogeneities (velocity shears, the heliospheric current sheet) are present, which are sources of decorrelation; yet at high latitudes, the wind is much more homogeneous, and a possible evolution mechanism is represented by the parametric instability. The parametric decay of an circularly polarized broadband Alfvén wave is then investigated, as a source of decorrelation. The time evolution is followed by numerically integrating the full set of nonlinear MHD equations, up to instability saturation. We find that, for <beta>  ~ 1, the final cross-helicity is ~ 0.5, corresponding to a partial depletion of the initial correlation. Compressive fluctuations at a moderate level are also present. Most of the spectrum is dominated by forward propagating Alfvénic fluctuations, while backscattered fluctuations dominate large scales. With increasing time, the spectra of Elsässer variables tend to approach each other. Some results concerning quantities measured in the high-latitude wind are reviewed, and a qualitative agreement with the results of the numerical model is found.


Author(s):  
Limin Yang ◽  
Arne Nestegård ◽  
Erik Falkenberg

Viscous effects on the low-frequency excitation force on column based platforms are significant in extreme waves. The wave drift force as calculated by a zero-current potential flow radiation/diffraction code becomes negligible for such waves. In the present study, the effect of current and viscous contributions on the slowly varying wave forces are adjusted by a formula developed in the Exwave JIP, see e.g. [1], which is validated against model test results. This paper presents numerical predictions of low frequency horizontal motions of a semi-submersible in combined high waves and current condition. In the simulation model, frequency dependent wave drift forces from radiation/diffraction code are modified by the formula. Static current forces and viscous damping are modelled by the drag term in Morison load formula using relative velocity between current and floater and with force coefficients as recommended by DNVGL-RP-C205 [2]. Low frequency surge responses calculated by the simulation model are compared with model tests for waves only and for combined collinear and noncollinear wave and current conditions.


Author(s):  
Nuno Fonseca ◽  
Carl Trygve Stansberg ◽  
Kjell Larsen ◽  
Rune Bjørkli ◽  
Tjerand Vigesdal ◽  
...  

Model tests have been performed with four mobile offshore drilling units (MODUs) with the aim of identifying wave drift forces and low frequency damping. The MODUs configuration is different, namely on the number and diameter of columns, therefore the sample is representative of many of the existing concepts. The model scale is the same as well as the wave and current conditions. The experimental program includes irregular waves with systematic variations of the significant wave height, wave peak period, current velocity and vessel heading. The test data is post-processed to identify the surge and sway quadratic transfer functions (QTFs) of the slowly varying excitation, together with the linearized low frequency damping. The post-processing applies a nonlinear data analysis technique known as “cross-bi-spectral analysis” to estimate characteristics of second-order (quadratic) responses from the measured motions and undisturbed incident wave elevation. The empirical QTFs are then compared with numerical predictions to conclude on the role of viscous drift and the applicability of Newman’s approximation for calculation of drift forces in irregular waves. Finally, the empirical drift forces, empirical low frequency damping coefficients and low frequency motions statistics are compared for the three MODUs to conclude on the relation between the Semi configuration and the low frequency responses.


2008 ◽  
Vol 3 (1) ◽  
Author(s):  
Tantular Nurtono ◽  
Heru Setyawan ◽  
Ali Altway ◽  
Sugeng Winardi

Low frequency and large scale flow variations, often called macro-instability (MI) phenomena, were studied by means of a combination of large eddy simulations (LES) and sliding mesh (SM) models. Numerical predictions of MI characterictic in a six-bladed Rushton turbine stirred tank were performed by varying the off-bottom clearance at constant impeller rotational speed. The occurrence of MI in this study was identified by two methods: observing visually the flow velocity vector field and analyzing the time-series data of both velocity in the bulk flow and dynamic pressure on the vessel wall. The transient flow field visualization revealed the secondary circulation flow and the asymmetrical flow pattern beside of the mean flow pattern. The high variation intensity of flow pattern variation was clearly identified in the region with smaller space. The flow pattern variation was corroborated with the presence of high amplitude peaks in the low frequency part of the frequency spectrum of flow velocity. The distinct peak that was usually designated as the frequency of MI revealed the characteristic of MI. The physical meaning of the frequency of MI was the periodical appearance of the pronounced flow pattern. The numerical predictions of the frequency of MI in the region below and above impeller studied in this paper were confirmed well with the experimental results reported by Matsuda et al. (2004). The numerical prediction of the dynamic pressure monitored on the tank wall was also in agreement with the flow velocity monitored in the bulk flow for indicating the MI phenomena. This way of monitoring will be useful for the study of MI in multiphase agitated tank in the near future and in the practical application.


Author(s):  
Weiwei Wu ◽  
Yiheng Guan

In this work, modified designs of Helmholtz resonators with extended deflected neck are proposed, numerically evaluated and optimized aiming to achieve a better transmission loss performance over a broader frequency range. For this, 10 Helmholtz resonators with different extended neck configurations (e.g. the angle between extended neck and the y-axis) in the presence of a grazing flow are assessed. Comparison is then made between the proposed resonators and the conventional one, i.e. in the absence of an extended neck (i.e. Design A). For this, a two-dimensional linearized Navier Stokes equations-based model of a duct with the modified Helmholtz resonator implemented was developed in frequency domain. The model was first validated by comparing its numerical predictions with the experimental results available in the literature and the theoretical results. The model was then applied to evaluate the noise damping performance of the Helmholtz resonator with (1) an extended neck on the upstream side (Design B); (2) on the downstream side (Design C), (3) both upstream and downstream sides (Design D), (4) the angle between the extended neck and the y-axis, i.e. (a) 0°, (b) 30°, and (c) 45°, (d) 48.321°. In addition, the effects of the grazing flow Mach number (Ma) were evaluated. It was found that the transmission loss peaks of the Helmholtz resonator with the extended neck was maximized at Ma = 0.03 than at the other Mach numbers. Conventional resonator, i.e. Design A was observed to be associated with a lower transmission loss performance at a lower resonant frequency than those as observed on Designs B–D. Moreover, the optimum design of the proposed resonators with the extended neck is shown to be able to shift the resonant frequency by approximately 90 Hz, and maximum transmission loss could be increased by 28–30 dB. In addition, the resonators with extended necks are found to be associated with two or three transmission loss peaks, indicating that these designs have a broader effective frequency range. Finally, the neck deflection angles of 30° and 45° are shown to be involved with better transmission loss peaks than that with a deflection angle of 0°. In summary, the present study sheds light on maximizing the resonator’s noise damping performances by applying and optimizing an extended neck.


Author(s):  
Nuno Fonseca ◽  
Galin Tahchiev ◽  
Sébastien Fouques ◽  
Carl Trygve Stansberg ◽  
José Miguel Rodrigues

Abstract Prediction of shallow water low frequency (LF) motions of vessels in the context of mooring analysis is challenging. Model tests are often performed to calibrate and validate numerical models and, in this way, reduce the uncertainty. Model tests are part of the positioning system qualifying process. However, model tests also present challenges and uncertainties related to parasitic low frequency wave systems which are unavoidable in shallow water ocean basin conditions. The paper presents model tests with a ship moored in shallow water (20 m), the analysis and discussion of the test data and comparisons with numerical predictions. The focus is on the low frequency motions and related wave drift forces. The tests have been performed in harmonic waves, bi-harmonic waves and irregular seastates, including conditions with and without current. The first part of the study consists of analysing the wave field measured by a long array of wave sensors distributed along the ocean basin. The analysis provides split wave systems, namely the low frequency components including the bound wave, the incoming free parasitic wave, the reflected component and additional very long waves. The second part proposes a method to calibrate and validate mooring analysis numerical models, based on comparisons with model test data which includes the unavoidable effects from parasitic waves. Simulations of LF motions with the calibrated model show a good agreement with the measurements.


Sign in / Sign up

Export Citation Format

Share Document