scholarly journals The evolution of Mode-2 nonlinear internal waves over the northern Heng-Chun ridge south of Taiwan

2015 ◽  
Vol 2 (1) ◽  
pp. 243-296 ◽  
Author(s):  
S. R. Ramp ◽  
Y. J. Yang ◽  
D. B. Reeder ◽  
M. C. Buijsman ◽  
F. L. Bahr

Abstract. Two research cruises were conducted from the R/V OCEAN RESEARCHER 3 during 5–16 August 2011 to study the generation of high-frequency nonlinear internal waves (NLIW) over the northern Heng-Chun Ridge south of Taiwan. The primary study site, centered near 21°34' N, 120°54' E, was on top of a smaller ridge about 15 km wide by 400 m high atop the primary ridge, with a sill depth of approximately 600 m. The bottom slope was steep over both sides of the ridge, supercritical with respect to both diurnal and semidiurnal tides. The key result of the experiments is that a profusion of mode-2 NLIW were observed by all the sensors. Some of the waves were solitary while others had as many as seven evenly-spaced waves per packet. The waves all exhibited classic mode-2 velocity structure with a core near 150–200 m and opposing velocities in the layers above and below. At least two and possibly three most common propagation directions emerged from the analysis, suggesting multiple generation sites near the east side of the ridge. The turbulent dissipation due to overturns in the wave cores was very high at order 10−4–10−3 W kg−1. The energy budget suggests that the waves cannot persist very far from the ridge and likely do not contribute to the South China Sea transbasin wave phenomenon.

2015 ◽  
Vol 22 (4) ◽  
pp. 413-431 ◽  
Author(s):  
S. R. Ramp ◽  
Y. J. Yang ◽  
D. B. Reeder ◽  
M. C. Buijsman ◽  
F. L. Bahr

Abstract. Two research cruises were conducted from the R/V OCEAN RESEARCHER 3 during 05–16 August 2011 to study the generation and propagation of high-frequency nonlinear internal waves (NLIWs) over the northern Heng-Chun Ridge south of Taiwan. The primary study site was on top of a smaller ridge about 15 km wide by 400 m high atop the primary ridge, with a sill depth of approximately 600 m. A single mooring was used in conjunction with shipboard observations to sample the temperature, salinity and velocity structure over the ridge. All the sensors observed a profusion of mode-2 NLIWs. Some of the waves were solitary, while others had as many as seven evenly spaced waves per packet. The waves all exhibited classic mode-2 velocity structure with a core near 150–200 m and opposing velocities in the layers above and below. At least two and possibly three most common propagation directions emerged from the analysis, suggesting multiple generation sites near the eastern side of the ridge. The turbulent dissipation due to overturns in the wave cores was very high at order 10−4–10−3 W kg−1. The energy budget suggests that the waves cannot persist very far from the ridge and likely do not contribute to the South China Sea transbasin wave phenomenon.


2020 ◽  
Author(s):  
Seung-Woo Lee ◽  
SungHyun Nam

<p>Oceanic nonlinear internal waves (NLIWs) play an important role in regional circulation, biogeochemistry, energetics, vertical mixing, and underwater acoustics, causing hazards to marine engineering and submarine navigation. Mainly generated by the interaction of the barotropic tides with the bottom topography, they propagate and transform due to wave-wave interaction process. Here, we present characteristics of first two modes of NLIWs observed using high-resolution spatiotemporal data collected in a relatively flat area in the northeastern East China Sea in May 2015. Six groups of NLIWs were identified from the observations: four groups of mode-1 and two groups of mode-2. The amplitude, propagation speed, and characteristic width of mode-1 NLIWs had ranges of 4–16 m, 0.53–0.56 m s<sup>-1</sup>, and 310–610 m, respectively. The mode-2 NLIWs propagate eastward slowly with a speed less than 0.37 m s<sup>-1</sup> with a comparable amplitude of 4–14 m and longer characteristic width of 540–1920 m. Intermodal interactions may take a role in the evolution of mode-1 NLIWs west of the observational area. Our results characterizing the two modes of NLIWs highlight the significance of propagation and transformation of NLIWs and their modal interactions on a broad and shallow shelf.</p>


2010 ◽  
Vol 40 (6) ◽  
pp. 1338-1355 ◽  
Author(s):  
Matthew H. Alford ◽  
Ren-Chieh Lien ◽  
Harper Simmons ◽  
Jody Klymak ◽  
Steve Ramp ◽  
...  

Abstract In the South China Sea (SCS), 14 nonlinear internal waves are detected as they transit a synchronous array of 10 moorings spanning the waves’ generation site at Luzon Strait, through the deep basin, and onto the upper continental slope 560 km to the west. Their arrival time, speed, width, energy, amplitude, and number of trailing waves are monitored. Waves occur twice daily in a particular pattern where larger, narrower “A” waves alternate with wider, smaller “B” waves. Waves begin as broad internal tides close to Luzon Strait’s two ridges, steepening to O(3–10 km) wide in the deep basin and O(200–300 m) on the upper slope. Nearly all waves eventually develop wave trains, with larger–steeper waves developing them earlier and in greater numbers. The B waves in the deep basin begin at a mean speed of ≈5% greater than the linear mode-1 phase speed for semidiurnal internal waves (computed using climatological and in situ stratification). The A waves travel ≈5%–10% faster than B waves until they reach the continental slope, presumably because of their greater amplitude. On the upper continental slope, all waves speed up relative to linear values, but B waves now travel 8%–12% faster than A waves, in spite of being smaller. Solutions of the Taylor–Goldstein equation with observed currents demonstrate that the B waves’ faster speed is a result of modulation of the background currents by an energetic diurnal internal tide on the upper slope. Attempts to ascertain the phase of the barotropic tide at which the waves were generated yielded inconsistent results, possibly partly because of contamination at the easternmost mooring by eastward signals generated at Luzon Strait’s western ridge. These results present a coherent picture of the transbasin evolution of the waves but underscore the need to better understand their generation, the nature of their nonlinearity, and propagation through a time-variable background flow, which includes the internal tides.


2012 ◽  
Vol 42 (9) ◽  
pp. 1524-1547 ◽  
Author(s):  
Oliver M. Sun ◽  
Robert Pinkel

Abstract Evidence is presented for the transfer of energy from low-frequency inertial–diurnal internal waves to high-frequency waves in the band between 6 cpd and the buoyancy frequency. This transfer links the most energetic waves in the spectrum, those receiving energy directly from the winds, barotropic tides, and parametric subharmonic instability, with those most directly involved in the breaking process. Transfer estimates are based on month-long records of ocean velocity and temperature obtained continuously over 80–800 m from the research platform (R/P) Floating Instrument Platform (FLIP) in the Hawaii Ocean Mixing Experiment (HOME) Nearfield (2002) and Farfield (2001) experiments, in Hawaiian waters. Triple correlations between low-frequency vertical shears and high-frequency Reynolds stresses, 〈uiw∂Ui/∂z〉, are used to estimate energy transfers. These are supported by bispectral analysis, which show significant energy transfers to pairs of waves with nearly identical frequency. Wavenumber bispectra indicate that the vertical scales of the high-frequency waves are unequal, with one wave of comparable scale to that of the low-frequency parent and the other of much longer scale. The scales of the high-frequency waves contrast with the classical pictures of induced diffusion and elastic scattering interactions and violates the scale-separation assumption of eikonal models of interaction. The possibility that the observed waves are Doppler shifted from intrinsic frequencies near f or N is explored. Peak transfer rates in the Nearfield, an energetic tidal conversion site, are on the order of 2 × 10−7 W kg−1 and are of similar magnitude to estimates of turbulent dissipation that were made near the ridge during HOME. Transfer rates in the Farfield are found to be about half the Nearfield values.


2019 ◽  
Vol 49 (1) ◽  
pp. 309-328 ◽  
Author(s):  
Matthew D. Rayson ◽  
Nicole L. Jones ◽  
Gregory N. Ivey

AbstractLarge-amplitude mode-2 nonlinear internal waves were observed in 250-m-deep water on the Australian North West shelf. Wave amplitudes were derived from temperature measurements using three through-the-water-column moorings spaced 600 m apart in a triangular configuration. The moorings were deployed for 2 months during the transition period between the tropical monsoon and the dry season. The site had a 25–30-m-amplitude mode-1 internal tide that essentially followed the spring–neap tidal cycle. Regular mode-2 nonlinear wave trains with amplitudes exceeding 25 m, with the largest event exceeding 50 m, were also observed at the site. Overturning was observed during several mode-2 events, and the relatively high wave Froude number and steepness (0.15) suggested kinematic (convective) instability was likely to be the driving mechanism. The presence of the mode-2 waves was not correlated with the tidal forcing but rather occurred when the nonlinear steepening length scale was smaller than the distance from the generation region to the observation site. This steepening length scale is inversely proportional to the nonlinear parameter in the Korteweg–de Vries equation, and it varied by at least one order of magnitude under the evolving background thermal stratification over the observation period. Despite the complexity of the internal waves in the region, the nonlinear steepening length was shown to be a reliable indicator for the formation of large-amplitude mode-2 waves and the rarer occurrence of mode-1 large-amplitude waves. A local mode-2 generation mechanism caused by a beam interacting with a pycnocline is demonstrated using a fully nonlinear numerical solution.


2017 ◽  
Vol 836 ◽  
pp. 72-116 ◽  
Author(s):  
S. A. Thorpe

The supply of energy to the internal wave field in the ocean is, in total, sufficient to support the mixing required to maintain the stratification of the ocean, but can the required rates of turbulent dissipation in mid-water be sustained by breaking internal waves? It is assumed that turbulence occurs in regions where the field of motion can be represented by an exact solution of the equations that describe waves propagating through a uniformly stratified fluid and becoming unstable. Two instabilities leading to wave breaking are examined, convective instability and shear-induced Kelvin–Helmholtz instability. Models are constrained by data representative of the mid-water ocean. Calculations of turbulent dissipation are first made on the assumption that all the waves representing local breaking have the same steepness, $s$, and frequency, $\unicode[STIX]{x1D70E}$. For some ranges of $s$ and $\unicode[STIX]{x1D70E}$, breaking can support the required transfer of energy to turbulence. For convective instability this proves possible for sufficiently large $s$, typically exceeding 2.0, over a range of $\unicode[STIX]{x1D70E}$, while for shear-induced instability near-inertial waves are required. Relaxation of the constraint that the model waves all have the same $s$ and $\unicode[STIX]{x1D70E}$ requires new assumptions about the nature and consequences of wave breaking. Examples predict an overall dissipation consistent with the observed rates. Further observations are, however, required to test the validity of the assumptions made in the models and, in particular, to determine the nature and frequency of internal wave breaking in the mid-water ocean.


Author(s):  
Simon Mundy ◽  
Esmée Schilte

At the end of the last century, a dictionary could confidently define broadcasting as the transmission of a signal for television or radio. Within a decade, every element of that definition had changed. Transmission had branched out from the cumbersome business of placing masts bearing receivers and transmitters at the highest vantage points across the countryside. A signal was no longer confined to the band waves that the air could carry — invisible streams snaking their way across the landscape: Ultra High Frequency (UHF) carrying television, as long as the hills weren’t in the way; Very High Frequency (VHF or FM)carrying wonderful quality sound, as long as the same hills were not joined by chimneys, bodies, the wrong sort of cloud or stonework; Long Wave, unstoppable by anything except distance, it seemed,carrying cricket and the shipping forecast across Europe and far out to sea; Medium Wave(AM), the carrier of choice for hosts of daytime local music stations and great for listening in the car, but hopeless when night fell and the waves went bouncing around the ionosphere bringing martial music from Albania where the football commentary should have been; and Short Wave — the touchiest of the wave bands, that made catching the words as hard as catching fish, but finally gave national broadcasters a global reach.


Oceanography ◽  
2011 ◽  
Vol 24 (01) ◽  
pp. 90-99 ◽  
Author(s):  
Christopher Jackson ◽  
Yessy Arvelyna ◽  
Ichio Asanuma

2007 ◽  
Vol 37 (7) ◽  
pp. 1968-1988 ◽  
Author(s):  
J. N. Moum ◽  
J. M. Klymak ◽  
J. D. Nash ◽  
A. Perlin ◽  
W. D. Smyth

Abstract Winter stratification on Oregon’s continental shelf often produces a near-bottom layer of dense fluid that acts as an internal waveguide upon which nonlinear internal waves propagate. Shipboard profiling and bottom lander observations capture disturbances that exhibit properties of internal solitary waves, bores, and gravity currents. Wavelike pulses are highly turbulent (instantaneous bed stresses are 1 N m−2), resuspending bottom sediments into the water column and raising them 30+ m above the seafloor. The wave cross-shelf transport of fluid often counters the time-averaged Ekman transport in the bottom boundary layer. In the nonlinear internal waves that were observed, the kinetic energy is roughly equal to the available potential energy and is O(0.1) megajoules per meter of coastline. The energy transported by these waves includes a nonlinear advection term 〈uE〉 that is negligible in linear internal waves. Unlike linear internal waves, the pressure–velocity energy flux 〈up〉 includes important contributions from nonhydrostatic effects and surface displacement. It is found that, statistically, 〈uE〉 ≃ 2〈up〉. Vertical profiles through these waves of elevation indicate that up(z) is more important in transporting energy near the seafloor while uE(z) dominates farther from the bottom. With the wave speed c estimated from weakly nonlinear wave theory, it is verified experimentally that the total energy transported by the waves is 〈up〉 + 〈uE〉 ≃ c〈E〉. The high but intermittent energy flux by the waves is, in an averaged sense, O(100) watts per meter of coastline. This is similar to independent estimates of the shoreward energy flux in the semidiurnal internal tide at the shelf break.


Sign in / Sign up

Export Citation Format

Share Document