scholarly journals CO<sub>2</sub> effects on diatoms: A Synthesis of more than a decade of ocean acidification experiments with natural communities

Author(s):  
Lennart Bach ◽  
Jan Taucher

Abstract. Diatoms account for 40 % of marine primary production and are considered to be key players in the biological carbon pump. Ocean acidification (OA) is expected to affect diatoms primarily by changing the availability of CO2 as a substrate for photosynthesis or through altered ecological interactions within the marine food web. Yet, there is little consensus how entire diatom communities will respond to increasing CO2. To address this question, we synthesized the literature from over a decade of OA-experiments with natural diatom communities to uncover: 1) if and how bulk diatom communities respond to elevated CO2; 2) if shifts within the diatom communities could be expected and how they are expressed with respect to taxonomic affiliation and size structure. We found that diatom communities responded to high CO2 in ~60 % of the experiments and in this case more often positively (56 %) than negatively (32 %; 12 % did not report the direction of change). Shifts among different diatom species were observed in 65 % of the experiments. Our synthesis supports the hypothesis that high CO2 particularly favors larger species as 12 out of 13 experiments which investigated cell size found a shift towards larger species. Unraveling winners and losers with respect to taxonomic affiliation was difficult due to a limited database, but there is evidence that the genus Pseudo-nitzschia could be among the losers. We conclude that OA-induced changes in diatom competitiveness and assemblage structure must be classified as a “risk for ecosystem services” due to the pivotal role diatoms play in trophic transfer and biogeochemical cycles.

Ocean Science ◽  
2019 ◽  
Vol 15 (4) ◽  
pp. 1159-1175 ◽  
Author(s):  
Lennart Thomas Bach ◽  
Jan Taucher

Abstract. Diatoms account for up to 50 % of marine primary production and are considered to be key players in the biological carbon pump. Ocean acidification (OA) is expected to affect diatoms primarily by changing the availability of CO2 as a substrate for photosynthesis or through altered ecological interactions within the marine food web. Yet, there is little consensus how entire diatom communities will respond to increasing CO2. To address this question, we synthesized the literature from over a decade of OA-experiments with natural diatom communities to uncover the following: (1) if and how bulk diatom communities respond to elevated CO2 with respect to abundance or biomass and (2) if shifts within the diatom communities could be expected and how they are expressed with respect to taxonomic affiliation and size structure. We found that bulk diatom communities responded to high CO2 in ∼60 % of the experiments and in this case more often positively (56 %) than negatively (32 %) (12 % did not report the direction of change). Shifts among different diatom species were observed in 65 % of the experiments. Our synthesis supports the hypothesis that high CO2 particularly favours larger species as 12 out of 13 experiments which investigated cell size found a shift towards larger species. Unravelling winners and losers with respect to taxonomic affiliation was difficult due to a limited database. The OA-induced changes in diatom competitiveness and assemblage structure may alter key ecosystem services due to the pivotal role diatoms play in trophic transfer and biogeochemical cycles.


Author(s):  
Ulf Riebesell ◽  
Philippe D. Tortell

Over the past decade there has been rapidly growing interest in the potential effects of ocean acidification and perturbations of the carbonate system on marine organisms. While early studies focused on a handful of phytoplankton and calcifying invertebrates, an increasing number of investigators have begun to examine the sensitivity to ocean acidification of various planktonic and benthic organisms across the marine food web. Several excellent review articles have recently summarized the rapidly expanding literature on this topic (Fabry et al. 2008; Doney et al. 2009 ; Joint et al. 2011). The focus of this chapter is on the potential ecosystem-level effects of ocean acidification. Starting with a brief review of the basic physical, chemical, and biological processes which structure pelagic marine ecosystems, the chapter explores how organismal responses to perturbations of the carbonate system could scale up in both time and space to affect ecosystem functions and biogeochemical processes. As with many chapters in this volume, and indeed much of the ocean acidification literature at present, our review raises more questions than it answers. It is hoped that these questions will prove useful for articulating and addressing key areas of future research. Complexity in marine pelagic food webs results from the interactions of multiple trophic levels across a range of temporal and spatial scales. The traditional view of marine food webs (Steele 1974) involved a relatively short trophic system in which large phytoplankton (e.g. net plankton such as diatoms) were grazed by a variety of mesozooplankton (e.g. copepods), which were in turn consumed by second-level predators, including many economically important fish and invertebrate species. This ‘classic’ marine food web is typical of high-productivity regions such as coastal upwelling regimes (Lassiter et al. 2006). A characteristic feature of these systems is a strong decoupling between primary production and grazing, which results from the different metabolic rates of consumers and producers and, in many cases, ontogenetic and seasonal delays in the emergence of feeding predators. The uncoupling between phytoplankton and their consumers leads to significant export of organic material out of the euphotic zone, the so-called biological carbon pump (discussed further below).


2021 ◽  
Author(s):  
Kristy A. Lewis ◽  
Robert R. Christian ◽  
Charles W. Martin ◽  
Kira L. Allen ◽  
Ashley M. McDonald ◽  
...  

Science ◽  
2011 ◽  
Vol 331 (6013) ◽  
pp. 70-72 ◽  
Author(s):  
I. Kruta ◽  
N. Landman ◽  
I. Rouget ◽  
F. Cecca ◽  
P. Tafforeau
Keyword(s):  
Food Web ◽  

2018 ◽  
Vol 15 (1) ◽  
pp. 209-231 ◽  
Author(s):  
Stacy Deppeler ◽  
Katherina Petrou ◽  
Kai G. Schulz ◽  
Karen Westwood ◽  
Imojen Pearce ◽  
...  

Abstract. High-latitude oceans are anticipated to be some of the first regions affected by ocean acidification. Despite this, the effect of ocean acidification on natural communities of Antarctic marine microbes is still not well understood. In this study we exposed an early spring, coastal marine microbial community in Prydz Bay to CO2 levels ranging from ambient (343 µatm) to 1641 µatm in six 650 L minicosms. Productivity assays were performed to identify whether a CO2 threshold existed that led to a change in primary productivity, bacterial productivity, and the accumulation of chlorophyll a (Chl a) and particulate organic matter (POM) in the minicosms. In addition, photophysiological measurements were performed to identify possible mechanisms driving changes in the phytoplankton community. A critical threshold for tolerance to ocean acidification was identified in the phytoplankton community between 953 and 1140 µatm. CO2 levels  ≥ 1140 µatm negatively affected photosynthetic performance and Chl a-normalised primary productivity (csGPP14C), causing significant reductions in gross primary production (GPP14C), Chl a accumulation, nutrient uptake, and POM production. However, there was no effect of CO2 on C : N ratios. Over time, the phytoplankton community acclimated to high CO2 conditions, showing a down-regulation of carbon concentrating mechanisms (CCMs) and likely adjusting other intracellular processes. Bacterial abundance initially increased in CO2 treatments  ≥ 953 µatm (days 3–5), yet gross bacterial production (GBP14C) remained unchanged and cell-specific bacterial productivity (csBP14C) was reduced. Towards the end of the experiment, GBP14C and csBP14C markedly increased across all treatments regardless of CO2 availability. This coincided with increased organic matter availability (POC and PON) combined with improved efficiency of carbon uptake. Changes in phytoplankton community production could have negative effects on the Antarctic food web and the biological pump, resulting in negative feedbacks on anthropogenic CO2 uptake. Increases in bacterial abundance under high CO2 conditions may also increase the efficiency of the microbial loop, resulting in increased organic matter remineralisation and further declines in carbon sequestration.


Author(s):  
Paula Schirrmacher ◽  
Christina C. Roggatz ◽  
David M. Benoit ◽  
Jörg D. Hardege

AbstractWith carbon dioxide (CO2) levels rising dramatically, climate change threatens marine environments. Due to increasing CO2 concentrations in the ocean, pH levels are expected to drop by 0.4 units by the end of the century. There is an urgent need to understand the impact of ocean acidification on chemical-ecological processes. To date, the extent and mechanisms by which the decreasing ocean pH influences chemical communication are unclear. Combining behaviour assays with computational chemistry, we explore the function of the predator related cue 2-phenylethylamine (PEA) for hermit crabs (Pagurus bernhardus) in current and end-of-the-century oceanic pH. Living in intertidal environments, hermit crabs face large pH fluctuations in their current habitat in addition to climate-change related ocean acidification. We demonstrate that the dietary predator cue PEA for mammals and sea lampreys is an attractant for hermit crabs, with the potency of the cue increasing with decreasing pH levels. In order to explain this increased potency, we assess changes to PEA’s conformational and charge-related properties as one potential mechanistic pathway. Using quantum chemical calculations validated by NMR spectroscopy, we characterise the different protonation states of PEA in water. We show how protonation of PEA could affect receptor-ligand binding, using a possible model receptor for PEA (human TAAR1). Investigating potential mechanisms of pH-dependent effects on olfactory perception of PEA and the respective behavioural response, our study advances the understanding of how ocean acidification interferes with the sense of smell and thereby might impact essential ecological interactions in marine ecosystems.


PLoS ONE ◽  
2017 ◽  
Vol 12 (9) ◽  
pp. e0184512 ◽  
Author(s):  
Lohengrin Dias de Almeida Fernandes ◽  
Eduardo Barros Fagundes Netto ◽  
Ricardo Coutinho ◽  

2021 ◽  
Vol 772 ◽  
pp. 145064
Author(s):  
Yongfei Gao ◽  
Ruyue Wang ◽  
Yanyu Li ◽  
Xuebin Ding ◽  
Yueming Jiang ◽  
...  

Polar Record ◽  
2018 ◽  
Vol 54 (2) ◽  
pp. 158-175 ◽  
Author(s):  
Priscila Kienteca Lange ◽  
Ryszard Ligowski ◽  
Denise Rivera Tenenbaum

ABSTRACTConsidering that phytoplankton assemblages are good bioindicators of environmental conditions, the sensitivity of the Western Antarctic Peninsula (WAP) to climate change, and the importance of some areas of its islands as Antarctic Specially Managed Areas, this work assembles published datasets on phytoplankton biodiversity and ecology in confined coastal areas (embayments) of King George Island, WAP. Over 33 years (1980–2013), 415 species from 122 genera have been identified to species level, being mostly diatoms (371 species), with 10 new species described with local material (6 diatoms, 4 cyanobacteria). The importance of diatoms was indicated by the frequent occurrence of Corethron pennatum, Pseudogomphonema kamtshaticum, and abundant benthic genera in the plankton (e.g. Navicula, Cocconeis). The increased contribution of dinoflagellates after 2010 suggests marked changes in the water column. Early-summer blooms differ between the bays' eastern and western shores, with terrestrial melting and wind-driven upwelling inducing the dominance of benthic species at eastern shores, whereas planktonic diatoms (Thalassiosira, Pseudo-nizschia, and Chaetoceros) are most abundant along western shores and central areas. The importance of an accurate identification of organisms that are becoming key ecological components of the region is discussed, as recent changes in the microflora may affect the entire marine food web.


Sign in / Sign up

Export Citation Format

Share Document