scholarly journals Norwegian Sea net community production estimated from O<sub>2</sub> and prototype CO<sub>2</sub> optode measurements on a Seaglider

2020 ◽  
Author(s):  
Luca Possenti ◽  
Ingunn Skjelvan ◽  
Dariia Atamanchuk ◽  
Anders Tengberg ◽  
Matthew P. Humphreys ◽  
...  

Abstract. We report on a pilot study using a CO2 optode deployed on a Seaglider in the Norwegian Sea for 8 months (March to October 2014). The optode measurements required drift- and lag-correction, and in situ calibration using discrete water samples collected in the vicinity. We found the optode signal correlated better with the concentration of CO2, c(CO2), than with its partial pressure, p(CO2). Using the calibrated c(CO2) and a regional parameterisation of total alkalinity (AT) as a function of temperature and salinity, we calculated total dissolved inorganic carbon concentrations, CT, which had a standard deviation of 10 µmol kg−1 compared with direct CT measurements. The glider was also equipped with an oxygen (O2) optode. The O2 optode was drift-corrected and calibrated using a c(O2) climatology for deep samples (R2 = 0.89; RMSE = 0.009 µmol kg−1). The calibrated data enabled the calculation of CT – and oxygen-based net community production, N(CT) and N(O2). To derive N, CT and O2 inventory changes over time were combined with estimates of air-sea gas exchange and entrainment of deeper waters. Glider-based observations captured two periods of increased Chl a inventory in late spring (May) and a second one in summer (June). For the May period, we found N(CT) = (24±5) mmol m−2 d−1, N(O2) = (61±14) mmol m−2 d−1 and an (uncalibrated) Chl a peak concentration of craw(Chl a) = 3 mg m−3. During the June period, craw(Chl a) increased to a summer maximum of 4 mg m−3, which drove N(CT) to (64±67) mmol m−2 d−1 and N(O2) to (166±75) mmol m−2 d−1. The high-resolution dataset allowed for quantification of the changes in N before, during and after the periods of increased Chl a inventory. After the May period, the remineralisation of the material produced during the period of increased Chl a inventory decreased N(CT) to (−80±107) mmol m−2 d−1 and N(O2) to (−15±27) mmol m−2 d−1. The survey area was a source of O2 and a sink of CO2 for most of the summer. The deployment captured two different surface waters: the Norwegian Atlantic Current (NwAC) and the Norwegian Coastal Current (NCC). The NCC was characterised by lower c(O2) and CT than the NwAC, as well as lower N(O2), N(CT) and craw(Chl a). Our results show the potential of glider data to simultaneously capture time and depth-resolved variability in CT and O2.

Ocean Science ◽  
2021 ◽  
Vol 17 (2) ◽  
pp. 593-614
Author(s):  
Luca Possenti ◽  
Ingunn Skjelvan ◽  
Dariia Atamanchuk ◽  
Anders Tengberg ◽  
Matthew P. Humphreys ◽  
...  

Abstract. We report on a pilot study using a CO2 optode deployed on a Seaglider in the Norwegian Sea from March to October 2014. The optode measurements required drift and lag correction and in situ calibration using discrete water samples collected in the vicinity. We found that the optode signal correlated better with the concentration of CO2, c(CO2), than with its partial pressure, p(CO2). Using the calibrated c(CO2) and a regional parameterisation of total alkalinity (AT) as a function of temperature and salinity, we calculated total dissolved inorganic carbon content, c(DIC), which had a standard deviation of 11 µmol kg−1 compared with in situ measurements. The glider was also equipped with an oxygen (O2) optode. The O2 optode was drift corrected and calibrated using a c(O2) climatology for deep samples. The calibrated data enabled the calculation of DIC- and O2-based net community production, N(DIC) and N(O2). To derive N, DIC and O2 inventory changes over time were combined with estimates of air–sea gas exchange, diapycnal mixing and entrainment of deeper waters. Glider-based observations captured two periods of increased Chl a inventory in late spring (May) and a second one in summer (June). For the May period, we found N(DIC) = (21±5) mmol m−2 d−1, N(O2) = (94±16) mmol m−2 d−1 and an (uncalibrated) Chl a peak concentration of craw(Chl a) = 3 mg m−3. During the June period, craw(Chl a) increased to a summer maximum of 4 mg m−3, associated with N(DIC) = (85±5) mmol m−2 d−1 and N(O2) = (126±25) mmol m−2 d−1. The high-resolution dataset allowed for quantification of the changes in N before, during and after the periods of increased Chl a inventory. After the May period, the remineralisation of the material produced during the period of increased Chl a inventory decreased N(DIC) to (-3±5) mmol m−2 d−1 and N(O2) to (0±2) mmol m−2 d−1. The survey area was a source of O2 and a sink of CO2 for most of the summer. The deployment captured two different surface waters influenced by the Norwegian Atlantic Current (NwAC) and the Norwegian Coastal Current (NCC). The NCC was characterised by lower c(O2) and c(DIC) than the NwAC, as well as lower N(O2) and craw(Chl a) but higher N(DIC). Our results show the potential of glider data to simultaneously capture time- and depth-resolved variability in DIC and O2 concentrations.


2020 ◽  
Author(s):  
Maria Teresa Guerra ◽  
Carlos Rocha

&lt;p&gt;Organic and inorganic whole system metabolism for two Irish coastal areas were compared to evaluate carbonate system resilience to acidification. The two systems are characterized by contrasting watershed input types and composition. Kinvara Bay is fed by Submarine Groundwater Discharge (SGD) derived from a karstic catchment while Killary Harbour is fed by river discharge draining a siliciclastic catchment. Freshwater sources to sea have distinct Total Alkalinity (TA) and Dissolved Inorganic Carbon (DIC) concentrations, higher and lower than the open ocean, respectively, but both evidence seasonally variable low pH, ranging from 6.20 to 7.50. Retention of TA and DIC was calculated for the two areas using LOICZ methodology. In Kinvara bay, annually averaged retention of DIC was greater than for TA (5 &amp;#215; 10&lt;sup&gt;4&lt;/sup&gt; and 1.5 &amp;#215; 10&lt;sup&gt;5&lt;/sup&gt; mol d&lt;sup&gt;-1&lt;/sup&gt;), suggesting the system is acidifying further. Conversely, Killary Harbour shows negative TA and DIC retention, with DIC:TA &lt;1, suggesting an internal buffer against ocean acidification is operating.&lt;/p&gt;&lt;p&gt;Net Community Production (NCP) was calculated for both systems using Dissolved Oxygen data. Subsequently, we estimated Net Community Calcification (NCC) from the ratio between TA and DIC. NCP was always positive in Killary Harbour with an average of 318 mmol O&lt;sub&gt;2&lt;/sub&gt; m&lt;sup&gt;-2 &lt;/sup&gt;d&lt;sup&gt;-1&lt;/sup&gt; (equivalent to 89 mol C m&lt;sup&gt;-2&lt;/sup&gt; y&lt;sup&gt;-1&lt;/sup&gt;). However, Kinvara Bay shows relatively lower positive NCP in spring and summer (average of 46 mmol O&lt;sub&gt;2&lt;/sub&gt; m&lt;sup&gt;-2&lt;/sup&gt; d&lt;sup&gt;-1&lt;/sup&gt;), but negative NCP in autumn and winter. Therefore, Kinvara Bay&amp;#8217;s Total Organic Carbon (TOC) production was low, at ~21 g m&lt;sup&gt;-2&lt;/sup&gt; y&lt;sup&gt;-1&lt;/sup&gt; and not enough to overcome acidification driven by the SGD source composition. These results emphasize the complexity of interactions between the drivers of coastal acidification rate, affecting our ability to accurately assess the resilience of the carbonate system in these areas to ocean acidification pressure in the future.&lt;/p&gt;


2018 ◽  
Author(s):  
Daffne C. López-Sandoval ◽  
Katherine Rowe ◽  
Paloma Carillo-de-Albonoz ◽  
Carlos M. Duarte ◽  
Susana Agusti

Abstract. Resolving the environmental drivers shaping planktonic communities is fundamental to understanding their variability, present and future, across the ocean. More specifically, resolving the temperature-dependence of planktonic communities in low productive waters is essential to predict the response of marine ecosystems to warming scenarios, as ocean warming leads to oligotrophication of the subtropical ocean. Here we quantified plankton metabolic rates along the Red Sea, a unique oligotrophic and warm environment, and analysed the drivers that regulate gross primary production (GPP), community respiration (CR) and the net community production (NCP). The study was conducted on six oceanographic surveys following a north-south transect along Saudi Arabian coasts. Our findings revealed that Chl-a specific GPP and CR rates increased with increasing temperature (R2 = 0.41 and 0.19, respectively, P 


2012 ◽  
Vol 9 (8) ◽  
pp. 11705-11737 ◽  
Author(s):  
A. Silyakova ◽  
R. G. J. Bellerby ◽  
J. Czerny ◽  
K. G. Schulz ◽  
G. Nondal ◽  
...  

Abstract. Net community production (NCP) and ratios of carbon to nutrient consumption were studied during a large-scale mesocosm experiment on ocean acidification in Kongsfjorden, West Spitsbergen, during June–July 2010. Nutrient-deplete fjord water with natural phyto- and bacteriaplankton assemblages, enclosed in nine mesocosms of ~ 50 m3 volume, was exposed to pCO2 levels ranging from 185 to 1420 μatm on initial state. Mean values of pCO2 levels during experiment ranged from 175 to 1085 μatm in different mesocosms. Phytoplankton growth was stimulated by nutrient addition. In this study NCP is estimated as a cumulative change in dissolved inorganic carbon concentrations. Stoichiometric couping between inorganic carbon and nutrient is shown as a ratio of a cumulative NCP to a cumulative change in inorganic nutrients. Three peaks of chlorophyll a concentration occurred during the experiment. Accordingly the experiment was divided in three phases. Overall cumulative NCP was similar in all mesocosms by the final day of experiment. However, NCP varied among phases, showing variable response to CO2 perturbation. Carbon to nitrogen (C : N) and carbon to phosphorus (C : P) uptake ratios were estimated only for the period after nutrient addition (post-nutrient period). For the total post-nutrient period ratios were close to Redfield proportions, however varied from it in different phases. The response of C : N and C : P uptake ratios to CO2 perturbation was different for three phases of the experiment, reflecting variable NCP and dependence on changing microbial community. Through the variable NCP, C : N and C : P uptake ratios for 31 days of the experiment we show a flexibility of biogeochemical response establishing a strong microbial loop in Kongsfjorden under different CO2 scenarios.


2010 ◽  
Vol 7 (1) ◽  
pp. 251-300 ◽  
Author(s):  
J. T. Mathis ◽  
J. N. Cross ◽  
N. R. Bates ◽  
S. B. Moran ◽  
M. W. Lomas ◽  
...  

Abstract. The southeastern shelf of the Bering Sea is one of the ocean's most productive ecosystems and sustains more than half of the total US fish landings annually. However, the character of the Bering Sea shelf ecosystem has undergone a dramatic shift over the last several decades, causing notable increases in the dominance of temperate features coupled to the decline of arctic species and decreases in the abundance of commercially important organisms. In order to assess the current state of primary production in the southeastern Bering Sea, we measured the spatio-temporal distribution and controls on dissolved inorganic carbon (DIC) concentrations in spring and summer of 2008 across six shelf domains defined by differing biogeochemical characteristics. DIC concentrations were tightly coupled to salinity in spring and ranged from ~1900 μmol kg−1 over the inner shelf to ~2400 μmol kg−1 in the deeper waters of the Bering Sea. In summer, DIC concentrations were lower due to dilution from sea ice melt and primary production. Concentrations were found to be as low ~1800 μmol kg−1 over the inner shelf. We found that DIC concentrations were drawn down 30–150 μmol kg−1 in the upper 30 m of the water column due to primary production between the spring and summer occupations. Using the seasonal drawdown of DIC, estimated rates of net community production (NCP) on the inner, middle, and outer shelf averaged 28±10 mmol C m−2 d−1. However, higher rates of NCP (40–47 mmol C m−2 d−1) were observed in the ''Green Belt'' where the greatest confluence of nutrient-rich basin water and iron-rich shelf water occurs. We estimated that in 2008, total productivity across the shelf was on the order of ~105 Tg C yr−1. Due to the paucity of consistent, comparable productivity data, it is impossible at this time to quantify whether the system is becoming more or less productive. However, as changing climate continues to modify the character of the Bering Sea, we have shown that NCP can be an important indicator of how the ecosystem is functioning.


2014 ◽  
Vol 11 (11) ◽  
pp. 15399-15433
Author(s):  
E. Jeansson ◽  
R. G. J. Bellerby ◽  
I. Skjelvan ◽  
H. Frigstad ◽  
S. R. Ólafsdóttir ◽  
...  

Abstract. Fluxes of carbon and nutrients to the upper 100 m of the Iceland Sea are evaluated. The study utilises hydro-chemical data from the Iceland Sea time-series station (68.00° N, 12.67° W), for the years between 1993 and 2006. By comparing data of dissolved inorganic carbon (DIC) and nutrients in the surface layer (upper 100 m), and a sub-surface layer (100–200 m), we calculate monthly deficits in the surface, and use these to deduce the surface layer fluxes that affect the deficits: vertical mixing, horizontal advection, air–sea exchange, and biological activity. The deficits show a clear seasonality with a minimum in winter, when the mixed layer is at the deepest, and a maximum in early autumn, when biological uptake has removed much of the nutrients. The annual vertical fluxes of DIC and nitrate amounts to 1.7 ± 0.3 and 0.23 ± 0.07 mol m−2 yr−1, respectively, and the annual air–sea uptake of atmospheric CO2 is 4.4 ± 1.1 mol m−2 yr−1. The biologically driven changes in DIC during the year relates to net community production (NCP), and the net annual NCP corresponds to export production, and is here calculated to 6.1 ± 0.9 mol C m−2 yr−1. The typical, median C : N ratio during the period of net community uptake is 11, and thus clearly higher than Redfield, but is varying during the season.


2010 ◽  
Vol 7 (5) ◽  
pp. 1769-1787 ◽  
Author(s):  
J. T. Mathis ◽  
J. N. Cross ◽  
N. R. Bates ◽  
S. Bradley Moran ◽  
M. W. Lomas ◽  
...  

Abstract. In order to assess the current state of net community production (NCP) in the southeastern Bering Sea, we measured the spatio-temporal distribution and controls on dissolved inorganic carbon (DIC) concentrations in spring and summer of 2008 across six shelf domains defined by differing biogeochemical characteristics. DIC concentrations were tightly coupled to salinity in spring and ranged from ~1900 μmoles kg−1 over the inner shelf to ~2400 μmoles kg−1 in the deeper waters of the Bering Sea. In summer, DIC concentrations were lower due to dilution from sea ice melt, terrestrial inputs, and primary production. Concentrations were found to be as low ~1800 μmoles kg−1 over the inner shelf. We found that DIC concentrations were drawn down 30–150 μmoles kg−1 in the upper 30 m of the water column due to primary production and calcium carbonate formation between the spring and summer occupations. Using the seasonal drawdown of DIC, estimated rates of NCP on the inner, middle, and outer shelf averaged 28 ± 9 mmoles C m−2 d−1. However, higher rates of NCP (40–47 mmoles C m−2 d−1) were observed in the "Green Belt" where the greatest confluence of nutrient-rich basin water and iron-rich shelf water occurs. We estimated that in 2008, total NCP across the shelf was on the order of ~96 Tg C yr−1. Due to the paucity of consistent, comparable productivity data, it is impossible at this time to quantify whether the system is becoming more or less productive. However, as changing climate continues to modify the character of the Bering Sea, we have shown that NCP can be an important indicator of how the ecosystem is functioning.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Fuminori Hashihama ◽  
Ichiro Yasuda ◽  
Aki Kumabe ◽  
Mitsuhide Sato ◽  
Hiroshi Sasaoka ◽  
...  

AbstractSeasonal drawdown of dissolved inorganic carbon (DIC) in the subtropical upper ocean makes a significant contribution to net community production (NCP) globally. Although NCP requires macronutrient supply, surface macronutrients are chronically depleted, and their supply has been unable to balance the NCP demand. Here, we report nanomolar increases in surface nitrate plus nitrite (N+N, ~20 nM) and phosphate (PO4, ~15 nM) from summer to winter in the western subtropical North Pacific. Molar ratios of upward fluxes of DIC:N+N:PO4 to the euphotic zone (< 100 m) were in near-stoichiometric balance with microbial C:N:P ratios (107~243:16~35:1). Comparison of these upward influxes with other atmospheric and marine sources demonstrated that total supply is largely driven by the other sources for C and N (93~96%), but not for P (10%), suggesting that nanomolar upward supply of P and its preferential recycling play a vital role in sustaining the NCP.


2021 ◽  
Author(s):  
Jens Daniel Müller ◽  
Bernd Schneider ◽  
Ulf Gräwe ◽  
Peer Fietzek ◽  
Marcus Bo Wallin ◽  
...  

Abstract. Organic matter production by cyanobacteria blooms is a major environmental concern for the Baltic Sea as it promotes thespread of anoxic zones. Partial pressure of carbon dioxide (pCO2) measurements carried out on Ships of Opportunity (SOOP) since 2003 have proven to be a powerful tool to resolve the carbon dynamics of the blooms in space and time. However, SOOP measurements lack the possibility to directly constrain the depth–integrated net community production (NCP) due to their restriction to the sea surface. This study tackles the resulting knowledge gap through (1) providing a best–guess NCP estimatefor an individual cyanobacteria bloom based on repeated profiling measurements of pCO2 and (2) establishing an algorithm to accurately reconstruct depth–integrated NCP from surface pCO2 observations in combination with modelled temperature profiles. Goal (1) was achieved by deploying state–of–the–art sensor technology from a small–scale sailing vessel. The low–cost and flexible platform enabled observations covering an entire bloom event that occurred in July and August 2018 in the Eastern Gotland Sea. For the biogeochemical interpretation, recorded pCO2 profiles were converted to CT*, which is the dissolved inorganic carbon concentration normalised to alkalinity. We found that the investigated Nodularia–dominated bloom event had many biogeochemical characteristics in common with blooms in previous years. In particular, it lasted for about three weeks, caused a CT* drawdown of 80 μmol kg−1, and was accompanied by a sea surface temperature increase of 10 °C. The novel finding of this study is the vertical extension of the CT* drawdown up to 12 m water depth. Integration of the CT* drawdown across this depth and correction for vertical fluxes permit a best–guess NCP estimate of ~1.2 mol–C m−2. Addressing goal (2), we combined modelled hydrographical profiles with surface pCO2 observations recorded by SOOP Finnmaid within the study area. Introducing the temperature penetration depth (TPD) as a new parameter to integrate SOOP observations across depth, we achieve a reconstructed NCP estimate that agrees to the best–guess within 10 %. Applying the TPD approach to almost two decades of surface pCO2 observations available for the Baltic Sea bears the potential to provide new insights into the control and long–term trends of cyanobacteria NCP. This understanding is key for an effective design and monitoring of conservation measures aiming at a Good Environmental Status of the Baltic Sea.


Sign in / Sign up

Export Citation Format

Share Document