scholarly journals Norwegian Sea net community production estimated from O<sub>2</sub> and prototype CO<sub>2</sub> optode measurements on a Seaglider

Ocean Science ◽  
2021 ◽  
Vol 17 (2) ◽  
pp. 593-614
Author(s):  
Luca Possenti ◽  
Ingunn Skjelvan ◽  
Dariia Atamanchuk ◽  
Anders Tengberg ◽  
Matthew P. Humphreys ◽  
...  

Abstract. We report on a pilot study using a CO2 optode deployed on a Seaglider in the Norwegian Sea from March to October 2014. The optode measurements required drift and lag correction and in situ calibration using discrete water samples collected in the vicinity. We found that the optode signal correlated better with the concentration of CO2, c(CO2), than with its partial pressure, p(CO2). Using the calibrated c(CO2) and a regional parameterisation of total alkalinity (AT) as a function of temperature and salinity, we calculated total dissolved inorganic carbon content, c(DIC), which had a standard deviation of 11 µmol kg−1 compared with in situ measurements. The glider was also equipped with an oxygen (O2) optode. The O2 optode was drift corrected and calibrated using a c(O2) climatology for deep samples. The calibrated data enabled the calculation of DIC- and O2-based net community production, N(DIC) and N(O2). To derive N, DIC and O2 inventory changes over time were combined with estimates of air–sea gas exchange, diapycnal mixing and entrainment of deeper waters. Glider-based observations captured two periods of increased Chl a inventory in late spring (May) and a second one in summer (June). For the May period, we found N(DIC) = (21±5) mmol m−2 d−1, N(O2) = (94±16) mmol m−2 d−1 and an (uncalibrated) Chl a peak concentration of craw(Chl a) = 3 mg m−3. During the June period, craw(Chl a) increased to a summer maximum of 4 mg m−3, associated with N(DIC) = (85±5) mmol m−2 d−1 and N(O2) = (126±25) mmol m−2 d−1. The high-resolution dataset allowed for quantification of the changes in N before, during and after the periods of increased Chl a inventory. After the May period, the remineralisation of the material produced during the period of increased Chl a inventory decreased N(DIC) to (-3±5) mmol m−2 d−1 and N(O2) to (0±2) mmol m−2 d−1. The survey area was a source of O2 and a sink of CO2 for most of the summer. The deployment captured two different surface waters influenced by the Norwegian Atlantic Current (NwAC) and the Norwegian Coastal Current (NCC). The NCC was characterised by lower c(O2) and c(DIC) than the NwAC, as well as lower N(O2) and craw(Chl a) but higher N(DIC). Our results show the potential of glider data to simultaneously capture time- and depth-resolved variability in DIC and O2 concentrations.

2020 ◽  
Author(s):  
Luca Possenti ◽  
Ingunn Skjelvan ◽  
Dariia Atamanchuk ◽  
Anders Tengberg ◽  
Matthew P. Humphreys ◽  
...  

Abstract. We report on a pilot study using a CO2 optode deployed on a Seaglider in the Norwegian Sea for 8 months (March to October 2014). The optode measurements required drift- and lag-correction, and in situ calibration using discrete water samples collected in the vicinity. We found the optode signal correlated better with the concentration of CO2, c(CO2), than with its partial pressure, p(CO2). Using the calibrated c(CO2) and a regional parameterisation of total alkalinity (AT) as a function of temperature and salinity, we calculated total dissolved inorganic carbon concentrations, CT, which had a standard deviation of 10 µmol kg−1 compared with direct CT measurements. The glider was also equipped with an oxygen (O2) optode. The O2 optode was drift-corrected and calibrated using a c(O2) climatology for deep samples (R2 = 0.89; RMSE = 0.009 µmol kg−1). The calibrated data enabled the calculation of CT – and oxygen-based net community production, N(CT) and N(O2). To derive N, CT and O2 inventory changes over time were combined with estimates of air-sea gas exchange and entrainment of deeper waters. Glider-based observations captured two periods of increased Chl a inventory in late spring (May) and a second one in summer (June). For the May period, we found N(CT) = (24±5) mmol m−2 d−1, N(O2) = (61±14) mmol m−2 d−1 and an (uncalibrated) Chl a peak concentration of craw(Chl a) = 3 mg m−3. During the June period, craw(Chl a) increased to a summer maximum of 4 mg m−3, which drove N(CT) to (64±67) mmol m−2 d−1 and N(O2) to (166±75) mmol m−2 d−1. The high-resolution dataset allowed for quantification of the changes in N before, during and after the periods of increased Chl a inventory. After the May period, the remineralisation of the material produced during the period of increased Chl a inventory decreased N(CT) to (−80±107) mmol m−2 d−1 and N(O2) to (−15±27) mmol m−2 d−1. The survey area was a source of O2 and a sink of CO2 for most of the summer. The deployment captured two different surface waters: the Norwegian Atlantic Current (NwAC) and the Norwegian Coastal Current (NCC). The NCC was characterised by lower c(O2) and CT than the NwAC, as well as lower N(O2), N(CT) and craw(Chl a). Our results show the potential of glider data to simultaneously capture time and depth-resolved variability in CT and O2.


2020 ◽  
Author(s):  
Maria Teresa Guerra ◽  
Carlos Rocha

&lt;p&gt;Organic and inorganic whole system metabolism for two Irish coastal areas were compared to evaluate carbonate system resilience to acidification. The two systems are characterized by contrasting watershed input types and composition. Kinvara Bay is fed by Submarine Groundwater Discharge (SGD) derived from a karstic catchment while Killary Harbour is fed by river discharge draining a siliciclastic catchment. Freshwater sources to sea have distinct Total Alkalinity (TA) and Dissolved Inorganic Carbon (DIC) concentrations, higher and lower than the open ocean, respectively, but both evidence seasonally variable low pH, ranging from 6.20 to 7.50. Retention of TA and DIC was calculated for the two areas using LOICZ methodology. In Kinvara bay, annually averaged retention of DIC was greater than for TA (5 &amp;#215; 10&lt;sup&gt;4&lt;/sup&gt; and 1.5 &amp;#215; 10&lt;sup&gt;5&lt;/sup&gt; mol d&lt;sup&gt;-1&lt;/sup&gt;), suggesting the system is acidifying further. Conversely, Killary Harbour shows negative TA and DIC retention, with DIC:TA &lt;1, suggesting an internal buffer against ocean acidification is operating.&lt;/p&gt;&lt;p&gt;Net Community Production (NCP) was calculated for both systems using Dissolved Oxygen data. Subsequently, we estimated Net Community Calcification (NCC) from the ratio between TA and DIC. NCP was always positive in Killary Harbour with an average of 318 mmol O&lt;sub&gt;2&lt;/sub&gt; m&lt;sup&gt;-2 &lt;/sup&gt;d&lt;sup&gt;-1&lt;/sup&gt; (equivalent to 89 mol C m&lt;sup&gt;-2&lt;/sup&gt; y&lt;sup&gt;-1&lt;/sup&gt;). However, Kinvara Bay shows relatively lower positive NCP in spring and summer (average of 46 mmol O&lt;sub&gt;2&lt;/sub&gt; m&lt;sup&gt;-2&lt;/sup&gt; d&lt;sup&gt;-1&lt;/sup&gt;), but negative NCP in autumn and winter. Therefore, Kinvara Bay&amp;#8217;s Total Organic Carbon (TOC) production was low, at ~21 g m&lt;sup&gt;-2&lt;/sup&gt; y&lt;sup&gt;-1&lt;/sup&gt; and not enough to overcome acidification driven by the SGD source composition. These results emphasize the complexity of interactions between the drivers of coastal acidification rate, affecting our ability to accurately assess the resilience of the carbonate system in these areas to ocean acidification pressure in the future.&lt;/p&gt;


2014 ◽  
Vol 11 (12) ◽  
pp. 3279-3297 ◽  
Author(s):  
C.-H. Chang ◽  
N. C. Johnson ◽  
N. Cassar

Abstract. Southern Ocean organic carbon export plays an important role in the global carbon cycle, yet its basin-scale climatology and variability are uncertain due to limited coverage of in situ observations. In this study, a neural network approach based on the self-organizing map (SOM) is adopted to construct weekly gridded (1° × 1°) maps of organic carbon export for the Southern Ocean from 1998 to 2009. The SOM is trained with in situ measurements of O2 / Ar-derived net community production (NCP) that are tightly linked to the carbon export in the mixed layer on timescales of one to two weeks and with six potential NCP predictors: photosynthetically available radiation (PAR), particulate organic carbon (POC), chlorophyll (Chl), sea surface temperature (SST), sea surface height (SSH), and mixed layer depth (MLD). This nonparametric approach is based entirely on the observed statistical relationships between NCP and the predictors and, therefore, is strongly constrained by observations. A thorough cross-validation yields three retained NCP predictors, Chl, PAR, and MLD. Our constructed NCP is further validated by good agreement with previously published, independent in situ derived NCP of weekly or longer temporal resolution through real-time and climatological comparisons at various sampling sites. The resulting November–March NCP climatology reveals a pronounced zonal band of high NCP roughly following the Subtropical Front in the Atlantic, Indian, and western Pacific sectors, and turns southeastward shortly after the dateline. Other regions of elevated NCP include the upwelling zones off Chile and Namibia, the Patagonian Shelf, the Antarctic coast, and areas surrounding the Islands of Kerguelen, South Georgia, and Crozet. This basin-scale NCP climatology closely resembles that of the satellite POC field and observed air–sea CO2 flux. The long-term mean area-integrated NCP south of 50° S from our dataset, 17.9 mmol C m−2 d−1, falls within the range of 8.3 to 24 mmol C m−2 d−1 from other model estimates. A broad agreement is found in the basin-wide NCP climatology among various models but with significant spatial variations, particularly in the Patagonian Shelf. Our approach provides a comprehensive view of the Southern Ocean NCP climatology and a potential opportunity to further investigate interannual and intraseasonal variability.


2018 ◽  
Author(s):  
Daffne C. López-Sandoval ◽  
Katherine Rowe ◽  
Paloma Carillo-de-Albonoz ◽  
Carlos M. Duarte ◽  
Susana Agusti

Abstract. Resolving the environmental drivers shaping planktonic communities is fundamental to understanding their variability, present and future, across the ocean. More specifically, resolving the temperature-dependence of planktonic communities in low productive waters is essential to predict the response of marine ecosystems to warming scenarios, as ocean warming leads to oligotrophication of the subtropical ocean. Here we quantified plankton metabolic rates along the Red Sea, a unique oligotrophic and warm environment, and analysed the drivers that regulate gross primary production (GPP), community respiration (CR) and the net community production (NCP). The study was conducted on six oceanographic surveys following a north-south transect along Saudi Arabian coasts. Our findings revealed that Chl-a specific GPP and CR rates increased with increasing temperature (R2 = 0.41 and 0.19, respectively, P 


2012 ◽  
Vol 9 (8) ◽  
pp. 11705-11737 ◽  
Author(s):  
A. Silyakova ◽  
R. G. J. Bellerby ◽  
J. Czerny ◽  
K. G. Schulz ◽  
G. Nondal ◽  
...  

Abstract. Net community production (NCP) and ratios of carbon to nutrient consumption were studied during a large-scale mesocosm experiment on ocean acidification in Kongsfjorden, West Spitsbergen, during June–July 2010. Nutrient-deplete fjord water with natural phyto- and bacteriaplankton assemblages, enclosed in nine mesocosms of ~ 50 m3 volume, was exposed to pCO2 levels ranging from 185 to 1420 μatm on initial state. Mean values of pCO2 levels during experiment ranged from 175 to 1085 μatm in different mesocosms. Phytoplankton growth was stimulated by nutrient addition. In this study NCP is estimated as a cumulative change in dissolved inorganic carbon concentrations. Stoichiometric couping between inorganic carbon and nutrient is shown as a ratio of a cumulative NCP to a cumulative change in inorganic nutrients. Three peaks of chlorophyll a concentration occurred during the experiment. Accordingly the experiment was divided in three phases. Overall cumulative NCP was similar in all mesocosms by the final day of experiment. However, NCP varied among phases, showing variable response to CO2 perturbation. Carbon to nitrogen (C : N) and carbon to phosphorus (C : P) uptake ratios were estimated only for the period after nutrient addition (post-nutrient period). For the total post-nutrient period ratios were close to Redfield proportions, however varied from it in different phases. The response of C : N and C : P uptake ratios to CO2 perturbation was different for three phases of the experiment, reflecting variable NCP and dependence on changing microbial community. Through the variable NCP, C : N and C : P uptake ratios for 31 days of the experiment we show a flexibility of biogeochemical response establishing a strong microbial loop in Kongsfjorden under different CO2 scenarios.


2010 ◽  
Vol 7 (1) ◽  
pp. 251-300 ◽  
Author(s):  
J. T. Mathis ◽  
J. N. Cross ◽  
N. R. Bates ◽  
S. B. Moran ◽  
M. W. Lomas ◽  
...  

Abstract. The southeastern shelf of the Bering Sea is one of the ocean's most productive ecosystems and sustains more than half of the total US fish landings annually. However, the character of the Bering Sea shelf ecosystem has undergone a dramatic shift over the last several decades, causing notable increases in the dominance of temperate features coupled to the decline of arctic species and decreases in the abundance of commercially important organisms. In order to assess the current state of primary production in the southeastern Bering Sea, we measured the spatio-temporal distribution and controls on dissolved inorganic carbon (DIC) concentrations in spring and summer of 2008 across six shelf domains defined by differing biogeochemical characteristics. DIC concentrations were tightly coupled to salinity in spring and ranged from ~1900 μmol kg−1 over the inner shelf to ~2400 μmol kg−1 in the deeper waters of the Bering Sea. In summer, DIC concentrations were lower due to dilution from sea ice melt and primary production. Concentrations were found to be as low ~1800 μmol kg−1 over the inner shelf. We found that DIC concentrations were drawn down 30–150 μmol kg−1 in the upper 30 m of the water column due to primary production between the spring and summer occupations. Using the seasonal drawdown of DIC, estimated rates of net community production (NCP) on the inner, middle, and outer shelf averaged 28±10 mmol C m−2 d−1. However, higher rates of NCP (40–47 mmol C m−2 d−1) were observed in the ''Green Belt'' where the greatest confluence of nutrient-rich basin water and iron-rich shelf water occurs. We estimated that in 2008, total productivity across the shelf was on the order of ~105 Tg C yr−1. Due to the paucity of consistent, comparable productivity data, it is impossible at this time to quantify whether the system is becoming more or less productive. However, as changing climate continues to modify the character of the Bering Sea, we have shown that NCP can be an important indicator of how the ecosystem is functioning.


2019 ◽  
Author(s):  
Zong-Pei Jiang ◽  
Wei-Jun Cai ◽  
John Lehrter ◽  
Baoshan Chen ◽  
Zhangxian Ouyang ◽  
...  

Abstract. Net community production (NCP) in the surface mixed layer of the northern Gulf of Mexico (nGOM) and its coupling with the CO2 system were examined during the productive spring season. NCP was estimated using multiple approaches: (1) underway O2 and Ar ratio, (2) light/dark bottle oxygen incubations, and (3) non-conservative changes in dissolved inorganic carbon and nutrients; in order to assess uncertainties and compare the temporal-spatial scales associated with the different approaches. NCP estimates derived from various methods showed similar pattern along the river-ocean mixing gradient. The NCPO2Ar estimated from the high resolution O2 and Ar underway measurement is characterized by negative rates (−25.4 mmol C m−2 d−1) at the high nutrient and high turbidity river end (salinity  31) oligotrophic offshore waters due to nutrient limitation. Air-sea CO2 fluxes generally showed corresponding changes from being a strong CO2 source in the river channel to a CO2 sink in the plume. CO2 fluxes were near zero in offshore waters indicating balanced autotrophy and heterotrophy at these sites. Overall, the surface water in the nGOM (93–89.25° W, 28.5–29.5° N) was strongly autotrophic during the spring season in spring 2017 with mean NCP rate of 21.2 mmol C m−2 d−1 and as a CO2 sink of −6.7 mmol C m−2 d−1. By using a 1-D model, we demonstrated that a temporal mismatch between in situ biological production and gas exchange of O2 and CO2 could result in decoupling between NCP and CO2 flux (e.g., autotropic water as a CO2 source outside the Mississippi river mouth and heterotopic water as a CO2 sink near the Atchafalaya Delta). This decoupling was a result of in situ biological production superimposed on the lingering background pCO2 from the source water because of the slow air-sea CO2 exchange rate and buffering effect of the carbonate system.


2014 ◽  
Vol 8 (3) ◽  
pp. 3263-3295
Author(s):  
N.-X. Geilfus ◽  
J.-L. Tison ◽  
S. F. Ackley ◽  
S. Rysgaard ◽  
L. A. Miller ◽  
...  

Abstract. Temporal evolution of pCO2 profiles in sea ice in the Bellingshausen Sea, Antarctica, in October 2007 shows that the CO2 system in the ice was primarily controlled by physical and thermodynamic processes. During the survey, a succession of warming and cold events strongly influenced the physical, chemical and thermodynamic properties of the ice cover. Two sampling sites with contrasting characteristics of ice and snow thickness were sampled: one had little snow accumulation (from 8 to 25 cm) and larger temperature and salinity variations than the second site, where the snow cover was up to 38 cm thick and therefore better insulated the underlying sea ice. We confirm that each cooling/warming event was associated with an increase/decrease in the brine salinity, total alkalinity (TA), total dissolved inorganic carbon (TCO2), and in situ brine and bulk ice CO2 partial pressures (pCO2). Thicker snow covers muted these changes, suggesting that snow influences changes in the sea ice carbonate system through its impact on the temperature and salinity of the sea ice cover. During this survey, pCO2 was undersaturated with respect to the atmosphere both in situ, in the bulk ice (from 10 to 193 μatm), and in the brine (from 65 to 293 μatm), and the ice acted as a sink for atmospheric CO2 (up to 2.9 mmol m−2 d−1), despite the underlying supersaturated seawater (up to 462 μatm).


Sign in / Sign up

Export Citation Format

Share Document