scholarly journals Evaluation of basal melting parameterisations using in situ ocean and melting observations from the Amery Ice Shelf, East Antarctica

2021 ◽  
Author(s):  
Madelaine Gamble Rosevear ◽  
Benjamin Keith Galton-Fenzi ◽  
Craig Stevens

Abstract. Ocean driven melting of Antarctic ice shelves is causing grounded ice to be lost from the Antarctic continent at an accelerating rate. However, the ocean processes governing ice shelf melting are not well understood, contributing to uncertainty in projections of Antarctica's contribution to sea level. Here, we analyse oceanographic data and in situ measurements of ice shelf melt collected from an instrumented mooring beneath the centre of the Amery Ice Shelf, East Antarctica. This is the first direct measurement of basal melting from the Amery Ice Shelf, and was made through the novel application of an upwards-facing Acoustic Doppler Current Profiler (ADCP). ADCP data were also used to map a region of the ice base, revealing a steep topographic feature or “scarp” in the ice with vertical and horizontal scales of ~20 m and ~40 m respectively. The annually-averaged ADCP-derived melt rate of 0.51 ± 0.18 m yr−1 is consistent with previous modelling results and glaciological estimates, and there is significant seasonal variation in melting with a maximum in May and a minimum in September. Melting is driven by temperatures ~0.2 °C above the local freezing point and background and tidal currents, which have typical speeds of ~3.0 cm s−1 and 10.0 cm s−1 respectively. We use the coincident measurements of ice shelf melt and oceanographic forcing to evaluate parameterisations of ice-ocean interactions, and find that parameterisations in which there is an explicit dependence of the melt rate on current speed beneath the ice tend to overestimate the local melt rate at AM06 by between 200 % and 400 %, depending on the choice of drag coefficient. A convective parameterisation in which melting is a function of the slope of the ice base is also evaluated and is shown to under-predict melting by 20 % at this site. Using available observations from other ice shelves, we show that a common current speed-dependent parameterisation overestimates melting at all but the coldest, most energetic cavity conditions.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Masahiro Minowa ◽  
Shin Sugiyama ◽  
Masato Ito ◽  
Shiori Yamane ◽  
Shigeru Aoki

AbstractBasal melting of ice shelves is considered to be the principal driver of recent ice mass loss in Antarctica. Nevertheless, in-situ oceanic data covering the extensive areas of a subshelf cavity are sparse. Here we show comprehensive structures of temperature, salinity and current measured in January 2018 through four boreholes drilled at a ~3-km-long ice shelf of Langhovde Glacier in East Antarctica. The measurements were performed in 302–12 m-thick ocean cavity beneath 234–412 m-thick ice shelf. The data indicate that Modified Warm Deep Water is transported into the grounding zone beneath a stratified buoyant plume. Water at the ice-ocean interface was warmer than the in-situ freezing point by 0.65–0.95°C, leading to a mean basal melt rate estimate of 1.42 m a−1. Our measurements indicate the existence of a density-driven water circulation in the cavity beneath the ice shelf of Langhovde Glacier, similar to that proposed for warm-ocean cavities of larger Antarctic ice shelves.


2008 ◽  
Vol 54 (188) ◽  
pp. 881-887 ◽  
Author(s):  
B.K. Galton-Fenzi ◽  
C. Maraldi ◽  
R. Coleman ◽  
J. Hunter

AbstractOcean circulation under ice shelves and associated rates of melting and freezing are strongly influenced by the shape of the sub-ice-shelf cavity. We have refined an existing method and used additional in situ measurements to estimate the cavity shape under the Amery Ice Shelf, East Antarctica. A finite-element hydrodynamic ocean-tide model was used to simulate the major tidal constituents for a range of different sub-Amery Ice Shelf cavity water-column thicknesses. The data are adjusted in the largely unsurveyed southern region of the ice-shelf cavity by comparing the complex error between simulated tides and in situ tides, derived from GPS observations. We show a significant improvement in the simulated tides, with a combined complex error of 1.8 cm, in comparison with past studies which show a complex error of ∼5.3 cm. Our bathymetry incorporates ice-draft data at the grounding line and seismic surveys, which have provided a considerable amount of new data. This technique has particular application when the water column beneath ice shelves is inaccessible and in situ GPS data are available.


1988 ◽  
Vol 34 (116) ◽  
pp. 71-77 ◽  
Author(s):  
M. Pedley ◽  
J.G. Paren ◽  
J.R. Potter

AbstractHobbs Pool is an area of thin ice shelf situated within George VI Ice Shelf, Antarctica. Thicker ice shelf surrounding Hobbs Pool isolates the upper 155 m of the water column from water lying at the same depth else-where under the ice shelf. Summer melt-water lakes drain through crevasses at Hobbs Pool forming a 155 m thick layer of low-salinity water close to its freezing point. Colder and more saline water in the lower part of this layer leads toin-situfreezing of fresher water lying above it. Below 155 m depth, the water temperature and salinity are linearly related by basal melting which is observed elsewhere under the ice shelf. The surface ice shows areas of deformation and deposits of subglacial rock debris which may result from upward particle paths in the area. The raising of subglacial rock debris on to the ice surface may provide a mechanism for the transport of erratics across the ice shelf to Alexander Island from the base of Palmer Land glaciers.


2015 ◽  
Vol 27 (5) ◽  
pp. 511-523 ◽  
Author(s):  
M.L. Pittard ◽  
J.L. Roberts ◽  
C.S. Watson ◽  
B.K. Galton-Fenzi ◽  
R.C. Warner ◽  
...  

AbstractMonitoring the rate of ice flow into ice shelves is vital to understanding how, where and when mass changes occur in Antarctica. Previous observations of ice surface velocity indicate that the Amery Ice Shelf and tributary glaciers have been relatively stable over the period 1968 to 1999. This study measured the displacement of features on the ice surface over a sequence of Landsat 7 images separated by approximately one year and spanning 2004 to 2012 using the surface feature tracking software IMCORR. The focus is on the region surrounding the southern grounding zone of the Amery Ice Shelf and its primary tributary glaciers: the Fisher, Lambert and Mellor glaciers. No significant changes in surface velocity were observed over this period. Accordingly, the velocity fields from each image pair between 2004 and 2012 were used to synthesize an average velocity dataset of the Amery Ice Shelf region and to compare it to previously published velocity datasets and in situ global positioning system velocity observations. No significant change in ice surface velocities was found between 2004 and 2012 in the Amery Ice Shelf region, which suggests that it continues to remain stable.


2019 ◽  
Author(s):  
Katrin Lindbäck ◽  
Geir Moholdt ◽  
Keith W. Nicholls ◽  
Tore Hattermann ◽  
Bhanu Pratap ◽  
...  

Abstract. Thinning rates of ice shelves vary widely around Antarctica and basal melting is a major component in ice shelf mass loss. In this study, we present records of basal melting, at unique spatial and temporal resolution for East Antarctica, derived from autonomous phase-sensitive radars. These records show spatial and temporal variations of ice shelf basal melting in 2017 and 2018 at Nivlisen, central Dronning Maud Land. The annually averaged melt rates are in general moderate (~ 0.8 m yr-1). Radar profiling of the ice-shelf shows variable ice thickness from smooth beds to basal crevasses and channels. The highest melt rates (3.9 m yr-1) were observed close to a grounded feature near the ice shelf front. Daily time-varying measurements reveal a seasonal melt signal 4 km from the ice shelf front, at an ice draft of 130 m, where the highest daily melt rates occurred in summer (up to 5.6 m yr-1). This seasonality indicates that summer-warmed ocean surface water was pushed by wind beneath the ice shelf front. We observed a different melt regime 35 km into the ice-shelf cavity, at an ice draft of 280 m, with considerably lower melt rates (annual average of 0.4 m yr-1) and no seasonality. We conclude that warm deep ocean water at present has limited effect on the basal melting of Nivlisen. On the other hand, a warming in surface waters, as a result of diminishing sea-ice cover has the potential to increase basal melting near the ice-shelf front. Many ice shelves like Nivlisen are stabilized by pinning points at their ice fronts and these areas may be vulnerable to future change.


2020 ◽  
Author(s):  
Kazuya Kusahara ◽  
Daisuke Hirano ◽  
Masakazu Fujii ◽  
Alexander D. Fraser ◽  
Takeshi Tamura

Abstract. Basal melting of Antarctic ice shelves accounts for more than half of the mass loss from the Antarctic Ice Sheet. Many studies have focused on active basal melting at ice shelves in the Amundsen-Bellingshausen Seas and the Totten Ice shelf, East Antarctica. In these regions, the intrusion of Circumpolar Deep Water (CDW) onto the continental shelf is a key component for the localized intensive basal melting. Both regions have a common oceanographic feature: southward deflection of the Antarctic Circumpolar Current on the eastern flank of ocean gyres brings CDW onto the continental shelves. The physical setting of Shirase Glacier Tongue (SGT) in Lützow-Holm Bay corresponds to a similar configuration for the Weddell Gyre in the Atlantic sector. Here, we conduct a 2–3 km resolution simulation of an ocean-sea ice-ice shelf model using a newly-compiled bottom topography dataset in the bay. The model can reproduce the observed CDW intrusion along the deep trough. The modeled SGT basal melting reaches a peak in summer and minimum in autumn and winter, consistent with the wind-driven seasonality of the CDW thickness in the bay. The model results suggest the existence of eastward-flowing undercurrent on the upper continental slope in summer, and the undercurrent contributes to the seasonal-to-interannual variability of the warm water intrusion into the bay. Furthermore, numerical experiments with and without fast-ice cover in the bay demonstrate that fast ice plays a role as an effective thermal insulator and reduces local sea-ice formation, resulting in much warmer water intrusion into the SGT cavity.


Author(s):  
S. D. Jawak ◽  
S. Kumar ◽  
A. J. Luis ◽  
P. H. Pandit ◽  
S. F. Wankhede ◽  
...  

<p><strong>Abstract.</strong> Antarctica and Greenland are two major Earth’s continental ice shelves which play an important role in influencing Earth’s energy balance through their high albedo. The ice sheets comprise of grounded ice or the continental glaciers and their associated ice shelves. Surface velocity is an important parameter that needs to be monitored to understand the glacier dynamics. Marine terminating glaciers have higher velocity than land terminating glaciers. Therefore, ice shelves are generally observed to have higher velocity as compared to continental glaciers. The focus of this study is Amery ice shelf (AIS) which is the third largest ice shelf located in east Antarctica terminating into the Prydz Bay on the eastern Antarctica. The surface ice-flow velocity of AIS is very high compared to its surrounding glaciers which flows at a rate of 1400&amp;thinsp;m&amp;thinsp;a<sup>&amp;minus;1</sup> and drains about 8% of the Antarctic ice sheet. AIS is fed by different glaciers and ice streams at the head, as well as from the western and eastern side of the ice shelf before it terminates into the ocean. The primary objective of this study was to compute velocity of the eastern tributary glaciers of AIS using SAR from Sentinel-1 data. The secondary objective was to compare the winter and summer velocities of the glaciers for 2017&amp;ndash;2018. The offset tracking method has been applied to the ground range detected (GRD) product obtained from Sentinel-1 satellite. This method is suitable for regions with higher glacier velocity where interferometry is generally affected by the loss of coherence. The offset tracking method works by tracking the features on the basis of another feature and calculates the offset between the two features in the images. Two tributary glaciers near the Clemence massif and another glacier near the Pickering Nunatak feed into this ice shelf from the eastern glacial basin region that drains ice from the American Highland, east Antarctica. The glaciers near the Clemence massif showed low annual velocity which ranged from 100&amp;thinsp;m&amp;thinsp;a<sup>&amp;minus;1</sup> at the head to &amp;sim;300&amp;thinsp;m&amp;thinsp;a<sup>&amp;minus;1</sup> near the end of the glacier, where it merges with AIS. The glaciers flowing near the Pickering Nunatak exhibited moderate velocity ranging from 150&amp;thinsp;m&amp;thinsp;a<sup>&amp;minus;1</sup> at its head and reaching up to 450&amp;thinsp;m&amp;thinsp;a<sup>&amp;minus;1</sup> near the tongue. The summer velocity (March 2018) was observed to be higher than the velocity in winter (July 2017) and the difference between the summer and the winter velocities was found to be between 50&amp;thinsp;m&amp;thinsp;a<sup>&amp;minus;1</sup> and 130&amp;thinsp;m&amp;thinsp;a<sup>&amp;minus;1</sup>. The results for the velocity were obtained at 120&amp;thinsp;m resolution and were compared with the previous MEaSUREs (Making Earth System Data Records for Use in Research Environments) yearly velocity at 450&amp;thinsp;m and 1&amp;thinsp;km resolution provided by National Snow and Ice Data Center portal. The results were evaluated using statistical measure- bias and the accuracy was derived using the root mean square error. The bias did not exceed 20&amp;thinsp;m&amp;thinsp;a<sup>&amp;minus;1</sup> for the three glaciers and the accuracy was observed to be more than 85% for most of the regions. The accuracy of the results suggests that the offset tracking technique is useful for future velocity estimation in the regions of high glacier velocity.</p>


2021 ◽  
Vol 15 (4) ◽  
pp. 1697-1717
Author(s):  
Kazuya Kusahara ◽  
Daisuke Hirano ◽  
Masakazu Fujii ◽  
Alexander D. Fraser ◽  
Takeshi Tamura

Abstract. Basal melting of Antarctic ice shelves accounts for more than half of the mass loss from the Antarctic ice sheet. Many studies have focused on active basal melting at ice shelves in the Amundsen–Bellingshausen seas and the Totten ice shelf, East Antarctica. In these regions, the intrusion of Circumpolar Deep Water (CDW) onto the continental shelf is a key component for the localized intensive basal melting. Both regions have a common oceanographic feature: southward deflection of the Antarctic Circumpolar Current brings CDW toward the continental shelves. The physical setting of the Shirase Glacier tongue (SGT) in Lützow-Holm Bay corresponds to a similar configuration on the southeastern side of the Weddell Gyre in the Atlantic sector. Here, we conduct a 2–3 km resolution simulation of an ocean–sea ice–ice shelf model using a recently compiled bottom-topography dataset in the bay. The model can reproduce the observed CDW intrusion along the deep trough. The modeled SGT basal melting reaches a peak in summer and a minimum in autumn and winter, consistent with the wind-driven seasonality of the CDW thickness in the bay. The model results suggest the existence of an eastward-flowing undercurrent on the upper continental slope in summer, and the undercurrent contributes to the seasonal-to-interannual variability in the warm water intrusion into the bay. Furthermore, numerical experiments with and without fast-ice cover in the bay demonstrate that fast ice plays a role as an effective thermal insulator and reduces local sea ice formation, resulting in much warmer water intrusion into the SGT cavity.


2010 ◽  
Vol 56 (195) ◽  
pp. 81-90 ◽  
Author(s):  
Jiahong Wen ◽  
Yafeng Wang ◽  
Weili Wang ◽  
K.C. Jezek ◽  
Hongxing Liu ◽  
...  

AbstractThe basal melting and freezing rates under the Amery Ice Shelf, East Antarctica, are evaluated, and their spatial distributions mapped. Ice velocity, surface elevation and accumulation rate datasets are employed in the analysis, along with a column-averaged ice density model. Our analysis shows that the total area of basal melting is 34 700 km2, with a total annual melt of 62.5 ± 9.3 Gt and an average melting rate of 1.8 ± 0.3 m a−1. Basal freezing mainly occurs in the northwestern part of the ice shelf, over a total area of 26 100 km2 and with a maximum freezing rate of 2.4 ± 0.4 m a−1. The total marine ice that accretes to the ice-shelf base is estimated to be 16.2 ± 2.4 Gt a−1. Using a redefined grounding line and geometry of the Amery Ice Shelf, we estimate the net melt over the ice-shelf base is about 46.4 ± 6.9 G ta−1, which is higher than previous modeling and oceanographic estimates. Net basal melting accounts for about half of the total ice-shelf mass loss, with the rest being from iceberg discharge. Our basal melting and freezing distribution map provides a scientific basis for quantitative analysis of ice–ocean interaction at the ice-shelf–ocean interface.


1998 ◽  
Vol 27 ◽  
pp. 75-80 ◽  
Author(s):  
M.J.M. Williams ◽  
R. C. Warner ◽  
W. F. Budd

Using a three-dimensional ocean model specially adapted to the ocean cavity under the Amery Ice Shelf, we investigated the present ocean circulation and pattern of ice-shelf basal melting and freezing, the differences which would result from temperature changes in the seas adjacent to the Amery Ice Shelf, and the ramifications of these changes for the mass balance of the ice shelf. Under present conditions we estimate the net loss from the Amery Ice Shelf from excess basal melting over freezing at approximately 7.8 Gt a−1. This comprises a gross loss of 11.4 Gt a−1 at a mean rate of 0.42 m a−1, which is partially offset by freezing-on of 3.6 Gt a−1, at a mean rate of 0.19 m a−1. When the adjacent seas were assumed to warm by 1°C, we found the net melt increased to 31.6 Gt a−1, comprising 34.6 Gt a−1 of gross melt and 3.0 Gt a−1 of freezing.


Sign in / Sign up

Export Citation Format

Share Document