scholarly journals Metrological traceability of oceanographic salinity measurement results

Ocean Science ◽  
2011 ◽  
Vol 7 (1) ◽  
pp. 45-62 ◽  
Author(s):  
S. Seitz ◽  
R. Feistel ◽  
D. G. Wright ◽  
S. Weinreben ◽  
P. Spitzer ◽  
...  

Abstract. Consistency of observed oceanographic salinity data is discussed with respect to contemporary metrological concepts. The claimed small uncertainty of salinity measurement results traceable to the conductivity ratio of a certified IAPSO Standard Seawater reference is not metrologically justified if results are compared on climatic time scales. This applies in particular to Practical Salinity SP, Reference Salinity SR, and the latest estimates of Absolute Salinity using the TEOS-10 formalism. On climate time scales an additional contribution to the uncertainty that is related to unknown property changes of the reference material must be accounted for. Moreover, when any of these measured or calculated quantity values is used to estimate Absolute Salinity of a seawater sample under investigation, another uncertainty contribution is required to quantify the accuracy of the equations relating the actually measured quantity to the Absolute Salinity. Without accounting for these additional uncertainties, such results cannot be used to estimate Absolute Salinity with respect to the International System of Units (SI), i.e. to the unit chosen for the mass fraction of dissolved material in the sample, which is "g kg−1". From a metrological point of view, such deficiencies in the calculations involving other quantities will produce SI-incompatible results. We outline how these problems can be overcome by linking salinity to primary SI measurement standards.

2010 ◽  
Vol 7 (4) ◽  
pp. 1303-1346 ◽  
Author(s):  
S. Seitz ◽  
R. Feistel ◽  
D. G. Wright ◽  
S. Weinreben ◽  
P. Spitzer ◽  
...  

Abstract. Consistency of observed oceanographic salinity data is discussed with respect to contemporary metrological concepts. The claimed small uncertainty of salinity measurement results traceable to the conductivity ratio of a certified IAPSO Standard Seawater reference is not metrologically justified if results are compared on climatic time scales. This applies in particular to Practical Salinity SP, Reference Salinity SR, and the latest estimates of Absolute Salinity using the TEOS-10 formalism. In climate time scales an additional contribution to the uncertainty that is related to unknown property changes of the reference material must be accounted for. Moreover, when any of these measured or calculated quantity values is used to estimate Absolute Salinity of a seawater sample under investigation, another uncertainty contribution is required to quantify the accuracy of the equations relating the actually measured quantity to the Absolute Salinity. Without accounting for these additional uncertainties, such results cannot be used to estimate Absolute Salinity with respect to the International System of Units (SI), i.e. to the unit chosen for the mass fraction of dissolved material in the sample, which is "g/kg". From a metrological point of view, such deficiencies in the calculations involving other quantities will produce SI-incompatible results. We outline how these problems can be overcome by linking salinity to primary SI measurement standards.


Author(s):  
Heinz Schimmel ◽  
Ingrid Zegers

AbstractThe concept of metrological traceability of measurement results to property values assigned to measurement standards of higher metrological order or to the International System of Units (SI) through sequential calibrations, using reference materials and reference measurement procedures, plays a key role in ensuring that end user measurement procedures perform at an acceptable level in the clinical context. The aim is that measurement results produced over time or by different end users or with different end user measurement procedures for the same measurand will be equivalent within their corresponding uncertainties. These goals can only be reached under certain conditions and if requirements laid down in international standards on calibration concepts, reference measurement procedures and reference materials are fulfilled. Calibration hierarchies have to be implemented correctly and parameters contributing to measurement uncertainty and systematic bias need to be controlled and eliminated, respectively, by technically improving methods and reference materials and intermediate calibrators used for effectively achieving equivalence of measurement results and for meeting analytical performance requirements for in vitro diagnostic devices.


2018 ◽  
Author(s):  
Rainer Feistel

Abstract. In the terrestrial climate system, water is a key player in the form of its different ambient phases of ice, liquid and vapour, admixed with sea salt in the ocean and with dry air in the atmosphere. For proper balances of climatic energy and entropy fluxes in models and observation, a highly accurate, consistent and comprehensive thermodynamic standard framework is requisite in geophysics and climate research. The new “Thermodynamic Equation of Seawater – 2010” (TEOS-10) constitutes such a standard for properties of water in its various manifestations in the hydrological cycle. TEOS-10 has been recommended internationally in 2009 by the Intergovernmental Oceanographic Commission (IOC) to replace the previous 1980 seawater standard, EOS-80, and in 2011 by the International Union of Geodesy and Geophysics (IUGG) “as the official description for the properties of seawater, of ice and of humid air”. This paper briefly reviews the development of TEOS-10, its novel axiomatic properties, new oceanographic tools it offers, and important tasks that still await solutions by ongoing research. Among the latter are new definitions and measurement standards for seawater salinity and pH, in order to establish their metrological traceability to the International System of Units (SI), for the first time after a century of widespread use. Of similar climatological relevance is the development and recommendation of a uniform standard definition of atmospheric relative humidity that is unambiguous and rigorously based on physical principles.


2016 ◽  
Vol 4 (2) ◽  
pp. 81-83
Author(s):  
Akiharu Hioki ◽  

Metrological traceability to an international reference, the International System of Units (SI) if possible, is important for the reliability of measurements. The international traceability system under the Metre Convention is briefly introduced. The simplest way to secure metrological traceability in chemical analyses is to utilise certified reference materials (CRMs) for calibration and validation. Finally, as examples of CRMs, NMIJ ones are described.


Ocean Science ◽  
2018 ◽  
Vol 14 (3) ◽  
pp. 471-502 ◽  
Author(s):  
Rainer Feistel

Abstract. In the terrestrial climate system, water is a key player in the form of its different ambient phases of ice, liquid and vapour, admixed with sea salt in the ocean and with dry air in the atmosphere. For proper balances of climatic energy and entropy fluxes in models and observations, a highly accurate, consistent and comprehensive thermodynamic standard framework is requisite in geophysics and climate research. The new Thermodynamic Equation of Seawater – 2010 (TEOS-10) constitutes such a standard for properties of water in its various manifestations in the hydrological cycle. TEOS-10 was recommended internationally in 2009 by the Intergovernmental Oceanographic Commission (IOC) to replace the previous 1980 seawater standard, EOS-80, and in 2011 by the International Union of Geodesy and Geophysics (IUGG) as the official description for the properties of seawater, of ice and of humid air. This paper briefly reviews the development of TEOS-10, its novel axiomatic properties, the new oceanographic tools it offers and the important tasks that still await solutions by ongoing research. Among the latter are new definitions and measurement standards for seawater salinity and pH in order to establish their metrological traceability to the International System of Units (SI) for the first time after a century of widespread use. Of similar climatological relevance is the development and recommendation of a uniform standard definition of atmospheric relative humidity that is unambiguous and rigorously based on physical principles.The leading thermodynamic properties of a fluid are determined by the relations which exist between volume, pressure, temperature, energy, and entropy … But all the relations existing between these five quantities for any substance …may be deduced from the single relation existing for that substance between volume, energy, and entropy. Josiah Willard Gibbs, 1873b


Separations ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 15
Author(s):  
Vikram Kestens ◽  
Victoria A. Coleman ◽  
Jan Herrmann ◽  
Caterina Minelli ◽  
Alex G. Shard ◽  
...  

Line-start incremental centrifugal liquid sedimentation (disc-CLS) is a powerful technique to determine particle size based on the principles of Stokes’ law. As most input quantities of the Stokes equation cannot be easily determined for typical instruments used for this method, an alternative method which depends on calibrating the sedimentation time scale with reference particles has become common practice. Unfortunately, most of these calibration materials (calibrants) come with limited information regarding their metrological reliability (e.g., lack of measurement uncertainties and traceability statements, incomplete measurand definitions). As a consequence, routine particle size results obtained by disc-CLS are mostly only traceable to the calibrant used, and effective comparisons can only be made for those results originating from measurements performed with the same types of calibrants. In this study, we discuss the concept of metrological traceability and demonstrate that particle size results obtained by disc-CLS can be traceable to the ultimate metrological reference, i.e., the unit of length in the International System of Units (SI), the meter. Using the example of two colloidal silica certified reference materials, we describe how laboratories can realize metrological traceability to the SI by simplifying complex traceability networks.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243175
Author(s):  
Takashi Ohtsuki ◽  
Kiyoaki Matsuoka ◽  
Yushiro Fuji ◽  
Yuzo Nishizaki ◽  
Naoko Masumoto ◽  
...  

A high-performance liquid chromatography (HPLC) method with relative molar sensitivity (RMS) based on 1H quantitative NMR spectroscopy (1H-qNMR) has been developed for food ingredients such as acteoside (verbascoside) and pedaliin (pedalitin-6-O-glucoside) without requiring authentic and identical standards as the reliable analytical methods. This method is used methyl 4-hydroxybenzoate (MHB) as an alternative reference standard. Each RMS is also calculated from the ratio of each analyte's molar absorption coefficient to that of MHB after correcting the purities of the analytes and reference standard by 1H-qNMR. Therefore, this method can quantify several analytes with metrological traceability to the International System of Units (SI) using the RMS and one alternative reference standard. In this study, the content of acteoside and pedaliin in several samples, such as dried sesame leaf powders and commercially processed foods, can be determined by the proposed RMS method and demonstrated in good agreement that obtained by a conventional method. Moreover, the proposed method yields analytical data with SI-traceability without the need for an authentic and identical analyte standard. Thus, the proposed RMS method is a useful and practical tool for determining acteoside and pedaliin in terms of the accuracy of quantitative values, the routine analysis, and the cost of reagents.


2019 ◽  
Vol 85 (2) ◽  
pp. 5-11
Author(s):  
L. A. Konopel’ko ◽  
R. L. Kadis ◽  
Yu. A. Kustikov

Redefinition of the basic units of the International System of Units (SI) — the kilogram, mole, ampere, and kelvin, — which are now expressed in terms of fundamental physical constants means a substantial revision of the system. In particular, the new definition of the mole fixing the value of the Avogadro constant sets a unit of the amount of substance, which is independent of the unit of mass. We consider some consequences of redefining (the mole and kilogram) and focus on the uncertainty of measuring the amount of substance and related quantities which are important for description of the mixture composition. The issue regarding the molar mass of the substance and associated uncertainty is considered in detail It is noted that calculation of the molar mass using relative atomic masses, involves the molar mass constant which is not equal exactly to 1 g/'mol in the new SI. This introduces an additional, though very small, uncertainty of less than 1 x 10-9in relative terms. The budget of uncertainty for the amount of substance determined through the mass measurements when the mass is measured with the highest accuracy is scrutinized. It is demonstrated that for substances of less than 99.98% purity, the uncertainty associated to the purity is comparable to that of relative atomic masses of the elements. For high-purity substances, the uncertainty in the relative atomic masses have the largest contribution to the budget. Anyhow, the uncertainty associated to the molar mass constant is three orders of magnitude less than the nearest contribution to the uncertainty attributed to weighing. In the case of derived quantities which are the ratio of two quantities of the same kind, the additional uncertainty does not arise at all. This is illustrated by the calculation of the mole fraction of a component in the gravimetrically prepared gas mixture.


2009 ◽  
Vol 5 (H15) ◽  
pp. 205-206
Author(s):  
Pascale Defraigne

Responsibility for the definition of time scales left the astronomical community some 40 years ago when, in 1967, the second became defined by an atomic transition in the International System of units SI and when International Atomic Time (TAI) was defined as the primary international time scale in 1971.


Sign in / Sign up

Export Citation Format

Share Document