scholarly journals Development of a new expendable probe for the study of pelagic ecosystems from Voluntary Observing Ships

2006 ◽  
Vol 3 (5) ◽  
pp. 1515-1541
Author(s):  
M. Marcelli ◽  
A. Di Maio ◽  
D. Donis ◽  
U. Mainardi ◽  
G. M. R. Manzella

Abstract. Physical and biological processes of the marine ecosystem have a high spatial and temporal variability, whose study is possible only through high resolution and synoptic observations. The T-FLAP (Temperature and Fluorescence LAunchable Probe) was charted in order to answer to the claim of a cost effective temperature and fluorescence expendable profiler, to be used in ships of opportunity. The development of the expendable fluorimeter has followed similar concepts of the XBT (a wire conducting the signal to a computer card), but differently from that, T-FLAP was developed with an electronic system that can be improved and adapted to several variables measure channels. Commercial components were utilized to reach the aim of a low-cost probe: a glass bulb temperature resistor for the temperature measurement, blue LEDs, a photodiode and available selective glass filters, for fluorescence measurement. The measurement principle employed to detect phytoplankton's biomass is the active fluorescence. This method is an in vivo chlorophyll measure, that can get the immediate biophysical reaction of the cell inside the aquatic ecosystem; it is a non-disruptive method which gives a real time measure and avoids the implicit errors due to the manipulation of samples. The possibility of using continuous profiling probe, with an active fluorescence measurement, is very important in the study of phytoplankton in real time; it is the best way to follow the variability of sea productivity. In fact, because of the high time and space variability of phytoplankton, due to its capability to answer in a relatively short time to ecological variations in its environment and because of its characteristic patchiness, there isn't a precise quantitative estimation of the biomass present in the Mediterranean sea.

Ocean Science ◽  
2007 ◽  
Vol 3 (2) ◽  
pp. 311-320 ◽  
Author(s):  
M. Marcelli ◽  
A. Di Maio ◽  
D. Donis ◽  
U. Mainardi ◽  
G. M. R. Manzella

Abstract. Physical and biological processes of the marine ecosystem have a high spatial and temporal variability, whose study is possible only through high resolution and synoptic observations. The Temperature and Fluorescence Launchable Probe was charted in order to answer to the claim of a cost effective temperature and fluorescence expendable profiler, to be used in ships of opportunity. The development of the expendable fluorometer has followed similar concepts of the XBT (a wire conducting the signal to a computer card), but differently from the latter it was developed with an electronic system which can be improved and adapted to several variables measure channels. To reach the aim of a low-cost probe, were utilized commercial components: a glass bulb temperature resistor for the temperature measurement, blue LEDs, a photodiode and available selective glass filters, for the fluorescence measurement. The measurement principle employed to detect phytoplankton's biomass is the active fluorescence. This method is an in vivo chlorophyll estimation, that can get the immediate biophysical reaction of phytoplankton inside the aquatic environment; it is a non-disruptive method which gives real time estimation and avoids the implicit errors due to the manipulation of samples. The possibility of using a continuous profiling probe, with an active fluorescence measurement, is very important in real time phytoplankton's study; it is the best way to follow the variability of sea productivity. In fact, because of the high time and space variability of phytoplankton, due to its capability to answer in a relatively short time to ecological variations in its environment and because of its characteristic patchiness, there isn't a precise quantitative estimation of the biomass present in the Mediterranean Sea.


Author(s):  
Ashish Patel ◽  
Ravi Vanecha ◽  
Jay Patel ◽  
Divy Patel ◽  
Umang Shah ◽  
...  

: Cancer is a frightful disease that still poses a 'nightmare' worldwide, causing millions of casualties annually due to one of the human race's most significant healthcare challenges that requires a pragmatic treatment strategy. However, plants and plant-derived products revolutionize the field as they are quick, cleaner, eco-friendly, low-cost, effective, and less toxic than conventional treatment methods. Plants are repositories for new chemical entities and have a promising cancer research path, supplying 60% of the anticancer agents currently used. Alkaloids are important chemical compounds that serve as a rich reservoir for drug discovery and development. However, some alkaloids derived from natural herbs display anti-proliferation and antimetastatic activity on different forms of cancer, both in vitro and in vivo. Alkaloids have also been widely formulated as anticancer medications, such as camptothecin and vinblastine. Still, more research and clinical trials are required before final recommendations can be made on specific alkaloids. This review focuses on the naturally-derived bioactive alkaloids with prospective anticancer properties based on the information in the literature.


Biosensors ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 174
Author(s):  
Ramzan Ullah ◽  
Karl Doerfer ◽  
Pawjai Khampang ◽  
Faraneh Fathi ◽  
Wenzhou Hong ◽  
...  

Proper ventilation of a patient with an endotracheal tube (ETT) requires proper placement of the ETT. We present a sensitive, noninvasive, operator-free, and cost-effective optical sensor, called Opt-ETT, for the real-time assessment of ETT placement and alerting of the clinical care team should the ETT become displaced. The Opt-ETT uses a side-firing optical fiber, a near-infrared light-emitting diode, two photodetectors with an integrated amplifier, an Arduino board, and a computer loaded with a custom LabVIEW program to monitor the position of the endotracheal tube inside the windpipe. The Opt-ETT generates a visual and audible warning if the tube moves over a distance set by the operator. Displacement prediction is made using a second-order polynomial fit to the voltages measured from each detector. The system is tested on ex vivo porcine tissues, and the accuracy is determined to be better than 1.0 mm. In vivo experiments with a pig are conducted to test the performance and usability of the system.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Arka Ghosh ◽  
David John Edwards ◽  
M. Reza Hosseini ◽  
Riyadh Al-Ameri ◽  
Jemal Abawajy ◽  
...  

PurposeThis research paper adopts the fundamental tenets of advanced technologies in industry 4.0 to monitor the structural health of concrete beam members using cost-effective non-destructive technologies. In so doing, the work illustrates how a coalescence of low-cost digital technologies can seamlessly integrate to solve practical construction problems.Design/methodology/approachA mixed philosophies epistemological design is adopted to implement the empirical quantitative analysis of “real-time” data collected via sensor-based technologies streamed through a Raspberry Pi and uploaded onto a cloud-based system. Data was analysed using a hybrid approach that combined both vibration-characteristic-based method and linear variable differential transducers (LVDT).FindingsThe research utilises a novel digital research approach for accurately detecting and recording the localisation of structural cracks in concrete beams. This non-destructive low-cost approach was shown to perform with a high degree of accuracy and precision, as verified by the LVDT measurements. This research is testament to the fact that as technological advancements progress at an exponential rate, the cost of implementation continues to reduce to produce higher-accuracy “mass-market” solutions for industry practitioners.Originality/valueAccurate structural health monitoring of concrete structures necessitates expensive equipment, complex signal processing and skilled operator. The concrete industry is in dire need of a simple but reliable technique that can reduce the testing time, cost and complexity of maintenance of structures. This was the first experiment of its kind that seeks to develop an unconventional approach to solve the maintenance problem associated with concrete structures. This study merges industry 4.0 digital technologies with a novel low-cost and automated hybrid analysis for real-time structural health monitoring of concrete beams by fusing several multidisciplinary approaches into one integral technological configuration.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4591 ◽  
Author(s):  
Pablo Blázquez-Carmona ◽  
Manuel Sanchez-Raya ◽  
Juan Mora-Macías ◽  
Juan Antonio Gómez-Galán ◽  
Jaime Domínguez ◽  
...  

For the monitoring of bone regeneration processes, the instrumentation of the fixation is an increasingly common technique to indirectly measure the evolution of bone formation instead of ex vivo measurements or traditional in vivo techniques, such as X-ray or visual review. A versatile instrumented external fixator capable of adapting to multiple bone regeneration processes was designed, as well as a wireless acquisition system for the data collection. The design and implementation of the overall architecture of such a system is described in this work, including the hardware, firmware, and mechanical components. The measurements are conditioned and subsequently sent to a PC via wireless communication to be in vivo displayed and analyzed using a developed real-time monitoring application. Moreover, a model for the in vivo estimation of the bone callus stiffness from collected data was defined. This model was validated in vitro using elastic springs, reporting promising results with respect to previous equipment, with average errors and uncertainties below 6.7% and 14.04%. The devices were also validated in vivo performing a bone lengthening treatment on a sheep metatarsus. The resulting system allowed the in vivo mechanical characterization of the bone callus during experimentation, providing a low-cost, simple, and highly reliable solution.


2009 ◽  
Vol 17 (25) ◽  
pp. 22735 ◽  
Author(s):  
V. Raimondi ◽  
G. Agati ◽  
G. Cecchi ◽  
I. Gomoiu ◽  
D. Lognoli ◽  
...  
Keyword(s):  
Low Cost ◽  

2020 ◽  
Author(s):  
Lavinia Tunini ◽  
David Zuliani ◽  
Paolo Fabris ◽  
Marco Severin

<p>The Global Navigation Satellite Systems (GNSS) provide a globally extended dataset of primordial importance for a wide range of applications, such as crustal deformation, topographic measurements, or near surface processes studies. However, the high costs of GNSS receivers and the supporting software can represent a strong limitation for the applicability to landslide monitoring. Low-cost tools and techniques are strongly required to face the plausible risk of losing the equipment during a landslide event.</p><p>Centro di Ricerche Sismologiche (CRS) of Istituto Nazionale di Oceanografia e di Geofisica Sperimentale OGS in collaboration with SoluTOP, in the last years, has developed a cost-effective GNSS device, called LZER0, both for post-processing and real-time applications. The aim is to satisfy the needs of both scientific and professional communities which require low-cost equipment to increase and improve the measurements on structures at risk, such as landslides or buildings, without losing precision.</p><p>The landslide monitoring system implements single-frequency GNSS devices and open source software packages for GNSS positioning, dialoguing through Linux shell scripts. Furthermore a front-end web page has been developed to show real-time tracks. The system allows measuring real-time surface displacements with a centimetre precision and with a cost ten times minor than a standard RTK GPS operational system.</p><p>This monitoring system has been tested and now applied to two landslides in NE- Italy: one near Tolmezzo municipality and one near Brugnera village. Part of the device development has been included inside the project CLARA 'CLoud plAtform and smart underground imaging for natural Risk Assessment' funded by the Italian Ministry of Education, University and Research (MIUR).</p>


2019 ◽  
Vol 5 (1) ◽  
pp. 297-301
Author(s):  
Valerie M. K. Werner ◽  
Daniel Strömsdörfer ◽  
Viet Nga Bui ◽  
Niklas von Wittenburg ◽  
Markus Eblenkamp

AbstractThe design of Smart Biomedical Devices will be a defining element of future research in the context of intelligent medical devices for the Internet of Medical Things (IoMT). A prerequisite for serving the disposable market is the use of cost-effective electronic components and the highest reliability of the developed products in terms of biocompatibility and bioprotection. In the study, resistors, capacitors, and light-emitting diodes, different in their materials and construction forms, were examined. The selected types represented electronic components as they are commonly installed on electronic system from the segment of low-cost standard components. These were subjected to steam sterilization with up to 50 cycles, gamma sterilization, and a CCK-8 assay to test in vitro cytotoxicity. Functional failure could not be determined for any component. Gamma sterilization did not result in significant changes in resistance values, but in capacitors with barium titanate as dielectric. Non-cytotoxic electronic components could be identified. The results show that certain electronic standard components are suitable for disposable Smart Biomedical Devices.


2012 ◽  
Vol 2 (1) ◽  
Author(s):  
Michael Johnson ◽  
Martin Hayes

AbstractThis paper considers the design, construction and validation of a low-cost experimental robotic testbed, which allows for the localisation and tracking of multiple robotic agents in real time. The testbed system is suitable for research and education in a range of different mobile robotic applications, for validating theoretical as well as practical research work in the field of digital control, mobile robotics, graphical programming and video tracking systems. It provides a reconfigurable floor space for mobile robotic agents to operate within, while tracking the position of multiple agents in real-time using the overhead vision system. The overall system provides a highly cost-effective solution to the topical problem of providing students with practical robotics experience within severe budget constraints. Several problems encountered in the design and development of the mobile robotic testbed and associated tracking system, such as radial lens distortion and the selection of robot identifier templates are clearly addressed. The testbed performance is quantified and several experiments involving LEGO Mindstorm NXT and Merlin System MiaBot robots are discussed.


Sign in / Sign up

Export Citation Format

Share Document