scholarly journals Tracers confirm downward mixing of Tyrrhenian Sea upper waters associated with the Eastern Mediterranean Transient

2010 ◽  
Vol 7 (4) ◽  
pp. 1533-1557
Author(s):  
W. Roether ◽  
J. E. Lupton

Abstract. Observations of tritium and 3He in the Tyrrhenian Sea, 1987–2009, confirm the enhanced convective mixing of intermediate waters into the deep waters that has been noted and associated with the Eastern Mediterranean Transient in previous studies. Our evidence for the mixing rests on increasing tracer concentrations in the Tyrrhenian deep waters, accompanied by decreases in the upper waters, which are supplied from the Eastern Mediterranean. The downward transfer is particularly evident between 1987 and 1997. Later on, information partly rests on increasing tritium-3He ages; here we correct the observed 3He for contributions released from the ocean floor. The Tyrrhenian tracer distributions are fully compatible with data upstream of the Sicily Strait and in the Western Mediterranean. The tracer data show that mixing reached to the bottom and confirm a cyclonic nature of the deep water circulation in the Tyrrhenian. They furthermore indicate that horizontal homogenization of the deep waters occurs on a time scale of several years. Various features point to a reduced impact of Western Mediterranean Deep Water (WMDW) in the Tyrrhenian during the enhanced-convection period. This is an important finding because it implies less upward mixing of WMDW, which has been named a major process to enable the WMDW to leave the Mediterranean via the Gibraltar Strait. On the other hand, the TDW outflow for several years represented a major influx of enhanced salinity and density waters into the deep-water range of the Western Mediterranean.

Ocean Science ◽  
2011 ◽  
Vol 7 (1) ◽  
pp. 91-99 ◽  
Author(s):  
W. Roether ◽  
J. E. Lupton

Abstract. Observations of tritium and 3He in the Tyrrhenian Sea, 1987–2009, confirm the enhanced vertical mixing of intermediate waters into the deep waters that has been noted and associated with the Eastern Mediterranean Transient in previous studies. Our evidence for the mixing rests on increasing tracer concentrations in the Tyrrhenian deep waters, accompanied by decreases in the upper waters, which are supplied from the Eastern Mediterranean. The downward transfer is particularly evident between 1987 and 1997. Later on, information partly rests on increasing tritium-3He ages; here we correct the observed 3He for contributions released from the ocean floor. The Tyrrhenian tracer distributions are fully compatible with data upstream of the Sicily Strait and in the Western Mediterranean. The tracer data show that mixing reached to the bottom and confirm a cyclonic nature of the deep water circulation in the Tyrrhenian. They furthermore indicate that horizontal homogenization of the deep waters occurs on a time scale of roughly 5 years. Various features point to a reduced impact of Western Mediterranean Deep Water (WMDW) in the Tyrrhenian during the enhanced-mixing period. This is an important finding because it implies less upward mixing of WMDW, which has been named a major process to enable the WMDW to leave the Mediterranean via the Gibraltar Strait. On the other hand, the TDW outflow for several years represented a major influx of enhanced salinity and density waters into the deep-water range of the Western Mediterranean.


2021 ◽  
Vol 8 ◽  
Author(s):  
Andrzej Pisera ◽  
Vasilis Gerovasileiou

Desmas-bearing demosponges known as lithistids have heavily silicified skeleton and occur typically in bathyal environments of warm and tropical areas but may be found in certain shallow marine caves. Here we report, for the first time two lithistid species, i.e., Neophrissospongia endoumensis, and N. cf. nana, that were earlier known from Western Mediterranean marine caves, from four marine caves in the north-eastern Mediterranean, and their congener Neophrissospongia nolitangere from deep waters (ca. 300 m) of the Aegean Sea. All marine caves, and sections within these caves, where lithistids occur, have freshwater springs. We interpret this surprising association between lithistids and freshwater input by elevated concentration of silica in water in cave sections where such springs occur, being 8–11 times higher in comparison with shallow water outside caves, and comparable to that of deep waters, that promoted lithistids’ development. One of the studied caves harbored an abundant population of N. endoumensis which formed large masses. The age estimation of these lithistids, based on known growth rate of related deep-water sponges, suggest that they could be approximately 769–909 years old in the case of the largest specimen observed, about 100 cm large. These sponges could have colonized the caves from adjacent deep-water areas not earlier than 7,000–3,000 years ago, after the last glaciation, because earlier they were emerged. High variability of spicules, especially microscleres, and underdevelopment of megascleres may be related to silicic acid concentration.


2016 ◽  
Vol 17 (2) ◽  
pp. 467 ◽  
Author(s):  
A. RIBOTTI ◽  
R. SORGENTE ◽  
A. OLITA ◽  
F. ORILIA ◽  
M. BORGHINI ◽  
...  

The Tyrrhenian Sea is a sub-basin of the western Mediterranean crossed by intermediate and deep waters from the eastern basin. Across this sub-basin, temperature profiles of the water column from expendable bathythermographs (XBT) have been acquired for sixteen years along transects realized thanks to the use of commercial vessels. Since 1999 an increase of temperature has been observed at intermediate depths even if interspersed with periods of decrease. This increase involves deeper and deeper depths along the years then involving the whole sub-basin in the range 200-800 m in September 2014 when largest anomalies over the whole period are found. The paper shows evidences of this rapid heating, giving insights into the origin and the diffusion of the warmer intermediate waters then showing its evolution in years and its relationship with the Eastern Mediterranean Transient.


2019 ◽  
Vol 49 (7) ◽  
pp. 1699-1721 ◽  
Author(s):  
Nadia Pinardi ◽  
Paola Cessi ◽  
Federica Borile ◽  
Christopher L. P. Wolfe

AbstractThe time-mean zonal and meridional overturning circulations of the entire Mediterranean Sea are studied in both the Eulerian and residual frameworks. The overturning is characterized by cells in the vertical and either zonal or meridional planes with clockwise circulations in the upper water column and counterclockwise circulations in the deep and abyssal regions. The zonal overturning is composed of an upper clockwise cell in the top 600 m of the water column related to the classical Wüst cell and two additional deep clockwise cells, one corresponding to the outflow of the dense Aegean water during the Eastern Mediterranean Transient (EMT) and the other associated with dense water formation in the Rhodes Gyre. The variability of the zonal overturning before, during, and after the EMT is discussed. The meridional basinwide overturning is composed of clockwise, multicentered cells connected with the four northern deep ocean formation areas, located in the Eastern and Western Mediterranean basins. The connection between the Wüst cell and the meridional overturning is visualized through the horizontal velocities vertically integrated across two layers above 600 m. The component of the horizontal velocity associated with the overturning is isolated by computing the divergent components of the vertically integrated velocities forced by the inflow/outflow at the Strait of Gibraltar.


2010 ◽  
Vol 27 (1) ◽  
pp. 129-135 ◽  
Author(s):  
M. C. Follesa ◽  
C. Porcu ◽  
S. Cabiddu ◽  
A. Mulas ◽  
A. M. Deiana ◽  
...  

Ocean Science ◽  
2014 ◽  
Vol 10 (1) ◽  
pp. 1-16 ◽  
Author(s):  
A. Schneider ◽  
T. Tanhua ◽  
W. Roether ◽  
R. Steinfeldt

Abstract. Significant changes in the overturning circulation of the Mediterranean Sea has been observed during the last few decades, the most prominent phenomena being the Eastern Mediterranean Transient (EMT) in the early 1990s and the Western Mediterranean Transition (WMT) during the mid-2000s. During both of these events unusually large amounts of deep water were formed, and in the case of the EMT, the deep water formation area shifted from the Adriatic to the Aegean Sea. Here we synthesize a unique collection of transient tracer (CFC-12, SF6 and tritium) data from nine cruises conducted between 1987 and 2011 and use these data to determine temporal variability of Mediterranean ventilation. We also discuss biases and technical problems with transient tracer-based ages arising from their different input histories over time; particularly in the case of time-dependent ventilation. We observe a period of low ventilation in the deep eastern (Levantine) basin after it was ventilated by the EMT so that the age of the deep water is increasing with time. In the Ionian Sea, on the other hand, we see evidence of increased ventilation after year 2001, indicating the restarted deep water formation in the Adriatic Sea. This is also reflected in the increasing age of the Cretan Sea deep water and decreasing age of Adriatic Sea deep water since the end of the 1980s. In the western Mediterranean deep basin we see the massive input of recently ventilated waters during the WMT. This signal is not yet apparent in the Tyrrhenian Sea, where the ventilation seems to be fairly constant since the EMT. Also the western Alboran Sea does not show any temporal trends in ventilation.


Author(s):  
Matthew Kroenig

This chapter considers Rome’s rise from a small kingdom on the Tiber River in Central Italy to dominating the entire Mediterranean and becoming one of the most powerful geopolitical forces in world history. Following scholars as diverse as Polybius, Machiavelli, and Montesquieu, it argues that the institutions of the Roman Republic were the key to its success. After its transition to republican governance in 509 BC, Rome succeeded in defeating neighboring tribes to control the entire Italian Peninsula and setting it up for rivalry with the other great republican powerhouse of the western Mediterranean: Carthage. Rome destroyed Carthage in a series of three Punic Wars. Finally, it dispensed with several autocratic kingdoms of the Hellenic world in the eastern Mediterranean, including Macedon. In just a few short centuries, Rome found itself transformed from a small city-state into a global superpower standing astride the entire civilized world.


2020 ◽  
Vol 8 ◽  
Author(s):  
Sabrina Lo Brutto ◽  
Davide Iaciofano

A survey has been carried out at four Israeli rocky sites to evaluate the diversity of the amphipod fauna on various hard substrates, still scarcely monitored, as potential pabulum for amphipod crustacean species. A survey of shallow rocky reefs along the Mediterranean coast of Israel recovered 28 species and integrated the Amphipoda checklist for the country ofIsrael with 12 newly-recorded species. Such renewed national list includes Maera schieckei Karaman & Ruffo, 1971, a rare species endemic to the Mediterranean Sea, recorded here for the first time from the southern Levant Basin. The species, described from specimens collected in the Tyrrhenian Sea in 1970, has been only recorded eight times within the whole Mediterranean Sea. A revision of the bibliography on the distribution and ecology of M. schieckei showed that, although mentioned only for the western Mediterranean basin by some authors, it is listed in the checklist of amphipods of the Aegean Sea and neighbouring seas and has been found in the eastern Mediterranean basin since 1978. Maera schieckei was rarely found in the Mediterranean, one of the most studied marine biogeographic region as concerns the amphipod fauna; and the species seems to prefer bays or gulf areas. The role of updating and monitoring faunal composition should be re-evaluated.


2020 ◽  
Vol 17 (13) ◽  
pp. 3343-3366
Author(s):  
Vincent Taillandier ◽  
Louis Prieur ◽  
Fabrizio D'Ortenzio ◽  
Maurizio Ribera d'Alcalà ◽  
Elvira Pulido-Villena

Abstract. In the western Mediterranean Sea, Levantine intermediate waters (LIW), which circulate below the surface productive zone, progressively accumulate nutrients along their pathway from the Tyrrhenian Sea to the Algerian Basin. This study addresses the role played by diffusion in the nutrient enrichment of the LIW, a process particularly relevant inside step-layer structures extending down to deep waters – structures known as thermohaline staircases. Profiling float observations confirmed that staircases develop over epicentral regions confined in large-scale circulation features and maintained by saltier LIW inflows on the periphery. Thanks to a high profiling frequency over the 4-year period 2013–2017, float observations reveal the temporal continuity of the layering patterns encountered during the cruise PEACETIME and document the evolution of layer properties by about +0.06 ∘C in temperature and +0.02 in salinity. In the Algerian Basin, the analysis of in situ lateral density ratios untangled double-diffusive convection as a driver of thermohaline changes inside epicentral regions and isopycnal diffusion as a driver of heat and salt exchanges with the surrounding sources. In the Tyrrhenian Sea, the nitrate flux across thermohaline staircases, as opposed to the downward salt flux, contributes up to 25 % of the total nitrate pool supplied to the LIW by vertical transfer. Overall, however, the nutrient enrichment of the LIW is driven mostly by other sources, coastal or atmospheric, as well as by inputs advected from the Algerian Basin.


Sign in / Sign up

Export Citation Format

Share Document