scholarly journals Interannual response of global ocean hindcasts to a satellite-based correction of precipitation fluxes

2012 ◽  
Vol 9 (2) ◽  
pp. 611-648 ◽  
Author(s):  
A. Storto ◽  
I. Russo ◽  
S. Masina

Abstract. We present a methodology to correct precipitation fluxes from the ECMWF atmospheric reanalysis (ERA-Interim) for oceanographic applications. The correction is performed by means of a spatially varying monthly climatological coefficient, computed within the period 1989–2008 by comparison between ERA-Interim and a satellite-based passive microwave precipitation product. ERA-Interim exhibits a systematic over-estimation of precipitation within the inter-tropical convergence zones (up to 3 mm d−1) and under-estimation at mid- and high- latitudes (up to −4 mm d−1). The correction has been validated within eddy-permitting resolution global ocean hindcasts (1989–2009), demonstrating the ability of our strategy in attenuating the 20-yr mean global EMP negative imbalance by 16%, reducing the near-surface salinity fresh bias in the Tropics up to 1 psu and improving the representation of the sea level interannual variability, with an SSH error decrease of 8%. The ocean circulation is also proved to benefit from the correction, especially in correspondence of the Antarctic Circumpolar Current, where the error in the near-surface current speed decreases by a 9%. Finally, we show that the correction leads to volume and freshwater transports that better agree with independent estimates.

2021 ◽  
Author(s):  
Sara Berglund ◽  
Kristofer Döös

<p>Water mass transformation is an important part of the Ocean circulation. Lagrangian trajectories can be used to connect pathways with water mass properties such as temperature and salinity. Here, we will introduce the Lagrangian divergence of heat and salt that can be computed using Lagrangian trajectories. This is a new method that can be used to determine where water masses are changing temperature or salinity geographically.<br>Further, the following two examples on how to use the Lagrangian divergence will be given:</p><p>(1) In the Atlantic Ocean water flows northward and transform from warm and saline to cold and fresh. The Lagrangian divergence has been used to show that this cooling and freshening is confined to the North Atlantic Subtropical Gyre.</p><p>(2) Waters in the upper limb of the Southern Hemisphere Conveyor Belt circulation converts from cold and fresh to warm and saline as it travels from the Southern Ocean to the tropics. The Lagrangian divergence shows that this warming and salinification are confined to the Antarctic Circumpolar Current, the southern subtropical gyres, and the equator. In this study, the Lagrangian divergence are separated by the mixed layer depth, which distinguishes if a change in heat and salt is driven by internal mixing or air--sea interactions.</p>


2022 ◽  
Author(s):  
K. Marynets

Abstract. This paper proposes a modelling of the Antarctic Circumpolar Current (ACC) by means of a two-point boundary value problem. As the major means of exchange of water between the great ocean basins (Atlantic, Pacific and Indian), the ACC plays a highly important role in the global climate. Despite its importance, it remains one of the most poorly understood components of global ocean circulation. We present some recent results on the existence and uniqueness of solutions of a two-point nonlinear boundary value problem that arises in the modeling of the flow of the (ACC) (see discussions in [4-9]).


2020 ◽  
Author(s):  
Shuzhuang Wu ◽  
Lester Lembke-Jene ◽  
Frank Lamy ◽  
Helge Arz ◽  
Norbert Nowaczyk ◽  
...  

Abstract The Antarctic Circumpolar Current (ACC) plays a crucial role in global ocean circulation by fostering deep-water upwelling and formation of new water masses. On geological time-scales, ACC variations are poorly constrained beyond the last glacial. Here, we reconstruct changes in ACC strength in the central Drake Passage over the past 140,000 years, based on grain-size and geochemical characteristics. We found significant glacial-interglacial changes of ACC flow speed, with reduced ACC intensity during glacials and a more vigorous circulation in interglacials. Superimposed on these orbital-scale changes are high-amplitude millennial-scale fluctuations, with ACC strength maxima correlating with diatom-based Antarctic winter sea-ice minima, particularly during full glacial conditions. We hypothesize that the ACC is closely linked to Southern Hemisphere millennial-scale climate oscillations, amplified through Antarctic sea ice extent changes. These strong ACC variations regulated Pacific-Atlantic water exchange via the “cold water route” and affected the Atlantic Meridional Overturning Circulation and marine carbon storage.


2020 ◽  
Vol 33 (21) ◽  
pp. 9065-9082 ◽  
Author(s):  
Fabio Boeira Dias ◽  
R. Fiedler ◽  
S. J. Marsland ◽  
C. M. Domingues ◽  
L. Clément ◽  
...  

AbstractOcean heat storage due to local addition of heat (“added”) and due to changes in heat transport (“redistributed”) were quantified in ocean-only 2xCO2 simulations. While added heat storage dominates globally, redistribution makes important regional contributions, especially in the tropics. Heat redistribution is dominated by circulation changes, summarized by the super-residual transport, with only minor effects from changes in vertical mixing. While previous studies emphasized the contribution of redistribution feedback at high latitudes, this study shows that redistribution of heat also accounts for 65% of heat storage at low latitudes and 25% in the midlatitude (35°–50°S) Southern Ocean. Tropical warming results from the interplay between increased stratification and equatorward heat transport by the subtropical gyres, which redistributes heat from the subtropics to lower latitudes. The Atlantic pattern is remarkably distinct from other basins, resulting in larger basin-average heat storage. Added heat storage is evenly distributed throughout midlatitude Southern Ocean and dominates the total storage. However, redistribution stores heat north of the Antarctic Circumpolar Current in the Atlantic and Indian sectors, having an important contribution to the peak of heat storage at 45°S. Southern Ocean redistribution results from intensified heat convergence in the subtropical front and reduced stratification in response to surface heat, freshwater, and momentum flux perturbations. These results highlight that the distribution of ocean heat storage reflects both passive uptake of heat and active redistribution of heat by changes in ocean circulation processes. The redistributed heat transport must therefore be better understood for accurate projection of changes in ocean heat uptake efficiency, ocean heat storage, and thermosteric sea level.


2016 ◽  
Vol 46 (11) ◽  
pp. 3385-3396 ◽  
Author(s):  
Jinbo Wang ◽  
Matthew R. Mazloff ◽  
Sarah T. Gille

AbstractThe Kerguelen Plateau is a major topographic feature in the Southern Ocean. Located in the Indian sector and spanning nearly 2000 km in the meridional direction from the polar to the subantarctic region, it deflects the eastward-flowing Antarctic Circumpolar Current and influences the physical circulation and biogeochemistry of the Southern Ocean. The Kerguelen Plateau is known to govern the local dynamics, but its impact on the large-scale ocean circulation has not been explored. By comparing global ocean numerical simulations with and without the Kerguelen Plateau, this study identifies two major Kerguelen Plateau effects: 1) The plateau supports a local pressure field that pushes the Antarctic Circumpolar Current northward. This process reduces the warm-water transport from the Indian to the Atlantic Ocean. 2) The plateau-generated pressure field shields the Weddell Gyre from the influence of the warmer subantarctic and subtropical waters. The first effect influences the strength of the Antarctic Circumpolar Current and the Agulhas leakage, both of which are important elements in the global thermohaline circulation. The second effect results in a zonally asymmetric response of the subpolar gyres to Southern Hemisphere wind forcing.


2020 ◽  
Vol 33 (6) ◽  
pp. 2111-2130
Author(s):  
Woo Geun Cheon ◽  
Jong-Seong Kug

AbstractIn the framework of a sea ice–ocean general circulation model coupled to an energy balance atmospheric model, an intensity oscillation of Southern Hemisphere (SH) westerly winds affects the global ocean circulation via not only the buoyancy-driven teleconnection (BDT) mode but also the Ekman-driven teleconnection (EDT) mode. The BDT mode is activated by the SH air–sea ice–ocean interactions such as polynyas and oceanic convection. The ensuing variation in the Antarctic meridional overturning circulation (MOC) that is indicative of the Antarctic Bottom Water (AABW) formation exerts a significant influence on the abyssal circulation of the globe, particularly the Pacific. This controls the bipolar seesaw balance between deep and bottom waters at the equator. The EDT mode controlled by northward Ekman transport under the oscillating SH westerly winds generates a signal that propagates northward along the upper ocean and passes through the equator. The variation in the western boundary current (WBC) is much stronger in the North Atlantic than in the North Pacific, which appears to be associated with the relatively strong and persistent Mindanao Current (i.e., the southward flowing WBC of the North Pacific tropical gyre). The North Atlantic Deep Water (NADW) formation is controlled by salt advected northward by the North Atlantic WBC.


2021 ◽  
Author(s):  
Chris Barrell ◽  
Ian Renfrew ◽  
Steven Abel ◽  
Andrew Elvidge ◽  
John King

<div> <p>During a cold-air outbreak (CAO) a cold polar airmass flows from the frozen land or ice surface, over the marginal ice zone (MIZ), then out over the comparatively warm open ocean. This constitutes a dramatic change in surface temperature, roughness and moisture availability, typically causing rapid change in the atmospheric boundary layer. Consequently, CAOs are associated with a range of severe mesoscale weather phenomena and accurate forecasting is crucial. Over the Nordic Seas CAOs also play a vital role in global ocean circulation, causing densification and sinking of ocean waters that form the headwaters of the Atlantic meridional overturning circulation. </p> </div><div> <p>To tackle the lack of observations during wintertime CAOs and improve scientific understanding in this important region, the Iceland Greenland Seas Project (IGP) undertook an extensive field campaign during February and March 2018. Aiming to characterise the atmospheric forcing and the ocean response, particularly in and around the MIZ, the IGP made coordinated ocean-atmosphere measurements, involving a research vessel, a research aircraft, a meteorological buoy, moorings, sea gliders and floats.  </p> </div><div> <p>The work presented here employs these novel observational data to evaluate output from the UK Met Office global operational forecasting system and from a pre-operational coupled ocean-ice-atmosphere system. The Met Office aim to transition to a coupled operational forecast in the coming years, thus verification of model versions in development is essential. Results show that this coupled model’s sea ice is generally more accurate than a persistent field. However, it can also suffer from cold-biased sea surface temperatures around the MIZ, which influences the modelled near-surface meteorology. Both these effects demonstrate the crucial importance of accurate sea ice simulation in coupled model forecasting in the high latitudes. Hence, an ice edge metric is then used to quantify the accuracy of the coupled model MIZ edge at two ocean grid resolutions. </p> </div>


2007 ◽  
Vol 37 (10) ◽  
pp. 2550-2562 ◽  
Author(s):  
Rick Lumpkin ◽  
Kevin Speer

Abstract A decade-mean global ocean circulation is estimated using inverse techniques, incorporating air–sea fluxes of heat and freshwater, recent hydrographic sections, and direct current measurements. This information is used to determine mass, heat, freshwater, and other chemical transports, and to constrain boundary currents and dense overflows. The 18 boxes defined by these sections are divided into 45 isopycnal (neutral density) layers. Diapycnal transfers within the boxes are allowed, representing advective fluxes and mixing processes. Air–sea fluxes at the surface produce transfers between outcropping layers. The model obtains a global overturning circulation consistent with the various observations, revealing two global-scale meridional circulation cells: an upper cell, with sinking in the Arctic and subarctic regions and upwelling in the Southern Ocean, and a lower cell, with sinking around the Antarctic continent and abyssal upwelling mainly below the crests of the major bathymetric ridges.


2018 ◽  
Vol 15 (6) ◽  
pp. 1843-1862 ◽  
Author(s):  
Andrés S. Rigual Hernández ◽  
José A. Flores ◽  
Francisco J. Sierro ◽  
Miguel A. Fuertes ◽  
Lluïsa Cros ◽  
...  

Abstract. The Southern Ocean is experiencing rapid and relentless change in its physical and biogeochemical properties. The rate of warming of the Antarctic Circumpolar Current exceeds that of the global ocean, and the enhanced uptake of carbon dioxide is causing basin-wide ocean acidification. Observational data suggest that these changes are influencing the distribution and composition of pelagic plankton communities. Long-term and annual field observations on key environmental variables and organisms are a critical basis for predicting changes in Southern Ocean ecosystems. These observations are particularly needed, since high-latitude systems have been projected to experience the most severe impacts of ocean acidification and invasions of allochthonous species. Coccolithophores are the most prolific calcium-carbonate-producing phytoplankton group playing an important role in Southern Ocean biogeochemical cycles. Satellite imagery has revealed elevated particulate inorganic carbon concentrations near the major circumpolar fronts of the Southern Ocean that can be attributed to the coccolithophore Emiliania huxleyi. Recent studies have suggested changes during the last decades in the distribution and abundance of Southern Ocean coccolithophores. However, due to limited field observations, the distribution, diversity and state of coccolithophore populations in the Southern Ocean remain poorly characterised. We report here on seasonal variations in the abundance and composition of coccolithophore assemblages collected by two moored sediment traps deployed at the Antarctic zone south of Australia (2000 and 3700 m of depth) for 1 year in 2001–2002. Additionally, seasonal changes in coccolith weights of E. huxleyi populations were estimated using circularly polarised micrographs analysed with C-Calcita software. Our findings indicate that (1) coccolithophore sinking assemblages were nearly monospecific for E. huxleyi morphotype B/C in the Antarctic zone waters in 2001–2002; (2) coccoliths captured by the traps experienced weight and length reduction during summer (December–February); (3) the estimated annual coccolith weight of E. huxleyi at both sediment traps (2.11 ± 0.96 and 2.13 ± 0.91 pg at 2000 and 3700 m) was consistent with previous studies for morphotype B/C in other Southern Ocean settings (Scotia Sea and Patagonian shelf); and (4) coccolithophores accounted for approximately 2–5 % of the annual deep-ocean CaCO3 flux. Our results are the first annual record of coccolithophore abundance, composition and degree of calcification in the Antarctic zone. They provide a baseline against which to monitor coccolithophore responses to changes in the environmental conditions expected for this region in coming decades.


Sign in / Sign up

Export Citation Format

Share Document