scholarly journals Integrated impact assessment of adaptive management strategies in a Dutch peatland polder

Author(s):  
Henk van Hardeveld ◽  
Harm de Jong ◽  
Maxim Knepflé ◽  
Thijs de Lange ◽  
Paul Schot ◽  
...  

Abstract. To achieve a more sustainable management of the subsiding Dutch peatlands, adaptations such as progressively higher surface water levels, pressurized field drains and a transition from dairy farming to paludiculture are considered. However, a clear understanding of implementation pathways for adaptive management strategies is lacking. Therefore, we used the RE:PEAT tool to elucidate the short-term and long-term impacts during 2025–2100 of two adaptive management strategies in Polder Zegveld and how to fairly distribute the costs and benefits of these strategies among the stakeholder groups. The strategies resulted in marked differences in soil subsidence and temporal trends in societal costs and benefits that affected stakeholders unequally. The adaptations were shown to reduce soil subsidence and enhance the sustainability of peatland management. We explored several options for a collective implementation of the adaptative management strategies. In addition, we discuss several ideas to further capitalize on the potential of the RE:PEAT tool to support peatland management. Currently, we are developing additional features that enable high spatio-temporal resolution simulations of the integrated dynamics of the surface water system, the shallow groundwater system, rainfall-runoff processes and solute transport. In combination with the PCDitch model, this will also enable detailed ecological assessments. This will pave the way for implementation pathways for adaptive management strategies that will contribute to a more sustainable peatland management.

2021 ◽  
Author(s):  
◽  
Craig Wayne Allen

<p>Te Hapua is a complex of small, privately owned wetlands approximately 60 km northwest of Wellington. The wetlands represent a large portion of the region's remaining palustrine swamps, which have been reduced to just 1% of the pre-1900 expanse. Whilst many land owners have opted to protect wetlands on their land with covenants, questions have been raised regarding potential threats stemming from the wider region. Firstly, some regional groundwater level records have shown significant decline in the 10 to 25 years they have been monitored. The reason for this is unclear. Wetlands are commonly associated with groundwater discharge, so a decline in groundwater level could adversely affect wetland water input. Secondly, estimated groundwater resources are currently just 8% allocated, so there is potential for a 92% increase in groundwater abstraction from aquifers that underlie the wetlands. Finally, predictions of future climate change indicate changes in rainfall quantity and intensity. This would likely alter the hydrological cycle, impacting on rainfall dependant ecosystems such as wetlands as well as groundwater recharge. Whilst previous ecological surveys at Te Hapua provide valuable information on biodiversity and ecological threat, there has been no detailed study of the hydrology of the wetlands. An understanding of the relationship between the surface water of the wetlands and the aquifers that underlie the area is important when considering the future viability of the wetlands. This study aims to define the local hydrology and assess the potential threat of 'long term' groundwater level decline, increased groundwater abstraction and predicted climate change. Eleven months of water level data was supplied by Wellington Regional Council for three newly constructed Te Hapua wetland surface water and adjacent shallow groundwater monitoring sites. The data were analysed in terms of their relative water levels and response to rainfall. A basic water balance was calculated using the data from the monitoring sites and a GIS analysis of elevation data mapped the wetlands and their watersheds. A survey of 21 individual wetlands was carried out to gather water quality and water regime data to enable an assessment of wetland class. Historical groundwater level trends and geological records were analysed in the context of potential threat to the wetlands posed by a decline in groundwater level. Climate change predictions for the Kapiti Coast were reviewed and discussed in the context of possible changes to the hydrological cycle and to wetlands. Results from the wetland survey indicated that there are two distinct bands of wetlands at Te Hapua. Fens are found mostly in the eastern band and are more likely to be discharge wetlands, some of which are ephemeral. Swamps are found mostly in the western band and are more likely to be recharge wetlands. Dominant water input to fens is via local rainfall and local through-flow of shallow groundwater, especially from surrounding dunes. The eastern band of wetlands is typified by higher dunes and hence has greater input from shallow groundwater than wetlands in the western band. Dominant water input to swamps is via local rainfall, runoff, and through-flow from the immediate watershed and adjacent wetlands. Overall, the future viability of the Te Hapua wetland complex appears promising. Historical groundwater declines appear to be minimal and show signs of reversing. Abstraction from deep aquifers is not likely to impact on wetland water levels. Climate change is likely to have an impact on the hydrological cycle and may increase pressure on some areas, especially ephemeral wetlands. The effect of climate change on groundwater level is more difficult to forecast, but may lower water level in the long term.</p>


Author(s):  
Jantine Hoekstra ◽  
Annette van Schie ◽  
Henk A. van Hardeveld

Abstract. Reducing soil subsidence caused by peat oxidation is a major challenge in the Dutch peatlands. To maintain suitable conditions for dairy farming water levels are periodically lowered to keep pace with soil subsidence. Consequently, soil subsidence continues, causing increasing water management costs. We experimented with pressurized drainage in Polder Spengen, a peatland polder in the west of the Netherlands that is primarily used for dairy farming. In this polder, surface water levels of 40 cm below ground surface are maintained, which results in average soil subsidence rates of 7 mm yr−1. Pressurized drainage is a novel technique to reduce soil subsidence, it uses field drains that are connected to a small water basin. Surface water can be pumped in or out the water basin, which enables active manipulation of the pressure head in the field drains. The objective of this study is to implement this technique into practice and determine its effect on groundwater tables, soil subsidence rates, and water demand. We applied pressurized drainage in 55 ha of peatland meadows in Polder Spengen, distributed over seven farms. We monitored groundwater tables, surface elevation and water demand. Preliminary results show that during the extreme dry summer of 2018, groundwater tables could be maintained at 40 cm below ground surface, which is 60 cm higher compared to locations without pressurized drainage. This reduced soil subsidence by 50 %. Throughout the entire summer of 2018, the water demand amounted to 3–5 mm d−1. We believe the technique can effectively contribute to minimize soil subsidence, but relatively high implementation costs may be a barrier to large-scale implementation.


2020 ◽  
Vol 3 (3) ◽  
pp. 797
Author(s):  
Lionel Felix ◽  
Gregorius Sandjaja Sentosa

Flooding has been a problem for the past few decades in Jakarta. The flooding in early January 2020 was one of the worst floods since 2013. One of the most severely affected areas was Kelapa Gading. To find a solution, infiltration wells are used. Infiltration well is a simple conservation in the form of a container that is built in the soil that functions to accommodate, hold and absorb surface water into the soil to increase the amount and position of the ground water level. The analysis begins by calculating the rainfall intensity from the January 2020 rainfall data, proceeding with the calculation of rainwater discharge with USSCS rational method, and calculation of the volume of water entering and not entering the drainage channel. This analysis focuses on flood water levels due to extreme rainfall, to then design infiltration wells. Analysis using the program is done after getting the results of manual calculations. The results of this analysis conclude that millions of infiltration wells are needed to absorb entire volume of flood water. This is due to the shallow groundwater and extreme conditions of rainfall.  Banjir sudah menjadi masalah selama beberapa dekade terakhir di Jakarta. Banjir pada awal Januari 2020 adalah salah satu banjir terparah sejak tahun 2013. Salah satu daerah yang paling terdampak adalah Kelapa Gading. Untuk mencari solusi banjir, digunakan sumur resapan. Sumur resapan adalah konservasi sederhana berupa wadah yang dibangun ke dalam tanah yang berfungsi menampung, menahan dan meresapkan air ke dalam tanah untuk meningkatkan muka air tanah. Analisis dimulai dengan menghitung intensitas hujan dari data curah hujan Januari 2020, lalu dilanjutkan dengan perhitungan debit air hujan dengan metode rasional USSCS, dan perhitungan volume air yang masuk dan tidak masuk ke saluran drainase. Analisis ini berfokus pada ketinggian air banjir akibat curah hujan yang ekstrim, untuk kemudian mendesain sumur resapan. Analisis menggunakan program dilakukan setelah mendapatkan hasil dari perhitungan manual. Hasil analisis ini menyimpulkan bahwa dibutuhkan jutaan sumur resapan untuk menyerap seluruh volume air banjir. Hal ini dikarenakan kondisi muka air tanah yang dangkal dan tingginya curah hujan.


2021 ◽  
Author(s):  
◽  
Craig Wayne Allen

<p>Te Hapua is a complex of small, privately owned wetlands approximately 60 km northwest of Wellington. The wetlands represent a large portion of the region's remaining palustrine swamps, which have been reduced to just 1% of the pre-1900 expanse. Whilst many land owners have opted to protect wetlands on their land with covenants, questions have been raised regarding potential threats stemming from the wider region. Firstly, some regional groundwater level records have shown significant decline in the 10 to 25 years they have been monitored. The reason for this is unclear. Wetlands are commonly associated with groundwater discharge, so a decline in groundwater level could adversely affect wetland water input. Secondly, estimated groundwater resources are currently just 8% allocated, so there is potential for a 92% increase in groundwater abstraction from aquifers that underlie the wetlands. Finally, predictions of future climate change indicate changes in rainfall quantity and intensity. This would likely alter the hydrological cycle, impacting on rainfall dependant ecosystems such as wetlands as well as groundwater recharge. Whilst previous ecological surveys at Te Hapua provide valuable information on biodiversity and ecological threat, there has been no detailed study of the hydrology of the wetlands. An understanding of the relationship between the surface water of the wetlands and the aquifers that underlie the area is important when considering the future viability of the wetlands. This study aims to define the local hydrology and assess the potential threat of 'long term' groundwater level decline, increased groundwater abstraction and predicted climate change. Eleven months of water level data was supplied by Wellington Regional Council for three newly constructed Te Hapua wetland surface water and adjacent shallow groundwater monitoring sites. The data were analysed in terms of their relative water levels and response to rainfall. A basic water balance was calculated using the data from the monitoring sites and a GIS analysis of elevation data mapped the wetlands and their watersheds. A survey of 21 individual wetlands was carried out to gather water quality and water regime data to enable an assessment of wetland class. Historical groundwater level trends and geological records were analysed in the context of potential threat to the wetlands posed by a decline in groundwater level. Climate change predictions for the Kapiti Coast were reviewed and discussed in the context of possible changes to the hydrological cycle and to wetlands. Results from the wetland survey indicated that there are two distinct bands of wetlands at Te Hapua. Fens are found mostly in the eastern band and are more likely to be discharge wetlands, some of which are ephemeral. Swamps are found mostly in the western band and are more likely to be recharge wetlands. Dominant water input to fens is via local rainfall and local through-flow of shallow groundwater, especially from surrounding dunes. The eastern band of wetlands is typified by higher dunes and hence has greater input from shallow groundwater than wetlands in the western band. Dominant water input to swamps is via local rainfall, runoff, and through-flow from the immediate watershed and adjacent wetlands. Overall, the future viability of the Te Hapua wetland complex appears promising. Historical groundwater declines appear to be minimal and show signs of reversing. Abstraction from deep aquifers is not likely to impact on wetland water levels. Climate change is likely to have an impact on the hydrological cycle and may increase pressure on some areas, especially ephemeral wetlands. The effect of climate change on groundwater level is more difficult to forecast, but may lower water level in the long term.</p>


2021 ◽  
Author(s):  
Jim Boonman ◽  
Mariet Hefting ◽  
Ko van Huissteden ◽  
Han Dolman ◽  
Ype van der Velde

&lt;p&gt;Peat soils are an important carbon stock in the global carbon cycle containing more than two third of the atmospheric carbon amount (600 GtC of 760 GtC) despite their relatively small landmass of 3% worldwide. Drainage of peatlands contributes significantly to the enhanced global warming, as it allows oxygen to intrude the soil, intensifying aerobic microbial decomposition associated with carbon dioxide emission. Water management strategies that result in a raise in (summer) groundwater tables can have the opposite effect. These measures, such as raising the surface water level and/or the application of submerged drain subsurface irrigation systems, are already being applied. However, the outcome of these strategies remains debated and is still largely to be tested. We aim to explore the potential effects of these water management strategies on reducing GHG emission in peatlands.&lt;/p&gt;&lt;p&gt;We simulated the effects of several water management strategies on potential aerobic peat decomposition in a managed Dutch grassland on sedge peat under various hydrological and climatological conditions. To estimate potential microbial activity in the unsaturated zone two main drivers, temperature and water filled pore space (WFPS) were used. We found that increasing ditch water levels yields a decrease in potential aerobic peat decomposition independent of summer drought, hydrological regime and peat hydrological conductivity. Furthermore, we found that submerged drainage-irrigation systems tend to establish a stable moist zone relatively close to the warm soil surface in which potential microbial activity can remain high over the complete summer period. Due to these stable conditions, we expect peat decomposition in this layer to be high, possibly counteracting the effects of decreased aeration depth due to higher water tables. Submerged drainage-irrigation systems generally decrease potential microbial activity in environments with downward flow, but increase the activity in environments with upward flow. Increased benefits of the submerged systems are found for dry years, with high surface water levels and/or decreasing hydrological conductivity of the intact peat.&lt;/p&gt;


1993 ◽  
Vol 27 (5-6) ◽  
pp. 61-67 ◽  
Author(s):  
E. Jacobs ◽  
J. W. van Sluis

The surface water system of Amsterdam is very complicated. Of two characteristic types of water systems the influences on water and sediment quality are investigated. The importance of the sewer output to the total loads is different for both water systems. In a polder the load from the sewers is much more important than in the canal basin. Measures to reduce the emission from the sewers are much more effective in a polder. The effect of these measures on sediment quality is more than the effect on water quality. Some differences between a combined sewer system and a separate sewer system can be found in sediment quality.


2013 ◽  
Vol 15 (4) ◽  
pp. 1203-1223 ◽  
Author(s):  
Eyal Price ◽  
Avi Ostfeld

Linear water balance optimal operation models are common with relative short solution times but suffer from a lack of certainty whether the given solution is at all hydraulically feasible. Introducing hydraulic headloss, water leakage and changing pump energy consumption, effect the resulting system optimal operation but also create a non-linear problem due to the convex relation between flow, headloss, water leakage and total head. This study utilizes a methodology published by the authors for linearization of convex or concave equations. An iterative linear programming (LP) minimal cost optimal operation supply model is solved including the Hazen–Williams headloss equation, pressure related water leakage equation, changing pump energy consumption and source cost. The model is demonstrated using an example application. ‘Greater than’ or ‘less than’ water head constraints at nodes may force the system to maintain certain water levels in water tanks reducing the available operating volume forcing pumping stations to operate in peak tariff periods as less storage is available in low tariff periods. Operationally, reducing water leakage may be achieved by reducing water heads along the system by means of shifting pump operation periods and maintaining low water levels in water tanks. Source costs may serve as penalties or rewards discouraging or encouraging the use of certain water sources.


Sign in / Sign up

Export Citation Format

Share Document