scholarly journals Application of a modified distributed-dynamic erosion and sediment yield model in a typical watershed of hilly and gully region, Chinese Loess Plateau

2016 ◽  
Author(s):  
Lei Wu ◽  
Xia Liu ◽  
Xiaoyi Ma

Abstract. Soil erosion not only results in the destruction of land resources and the decline of soil fertility, but also makes river channel sedimentation. In order to explore spatiotemporal evolution of erosion and sediment yield before and after returning farmland in a typical watershed of hilly and gully region, Chinese Loess Plateau, a distributed, dynamic model of sediment yield based on the Chinese Soil Loss equation (CSLE) was established and modified to assess effects of hydrological factors and human activities on soil erosion and sediment yield from 1995 to 2013. Results indicate that: 1) the modified model has characteristics of simple algorithm, high accuracy, wide practicability and easy expansion, and can be applied to forecast erosion and sediment yield of the hilly and gully region, Chinese Loess Plateau; 2) soil erosion gradations are closely related to spatial distributions of rainfall erosivity and land use patterns, the current soil and water conservation projects are not very ideal for high rainfall intensity; 3) the average sediment transport modulus before and after model modification in recent 5 years (in addition to 2013) is 4574.62 Mg/km2 and 1696.1 Mg/km2 respectively, it has decreased by about 35.4 % and 78.2 % compared with the early governance (1995–1998). However, in July 2013 the once-in-a-century storm is the most important factor causing the emergence of maximum value. Results may provide effective and scientific basis for soil and water conservation and ecological management of the hilly and gully region, Chinese Loess Plateau.

Solid Earth ◽  
2016 ◽  
Vol 7 (6) ◽  
pp. 1577-1590 ◽  
Author(s):  
Lei Wu ◽  
Xia Liu ◽  
Xiaoyi Ma

Abstract. Soil erosion not only results in the destruction of land resources and the decline of soil fertility, but also contributes to river channel sedimentation. In order to explore the spatiotemporal evolution of erosion and sediment yield before and after returning farmland in a typical watershed of the hilly and gully region (Chinese Loess Plateau), a distributed-dynamic model of sediment yield based on the Chinese Soil Loss Equation (CSLE) was established and modified to assess the effects of hydrological factors and human activities on erosion and sediment yield between 1995 and 2013. Results indicate that (1) the modified model has the characteristics of a simple algorithm, high accuracy, wide practicability and easy expansion, and can be applied to predict erosion and sediment yield in the study area, (2) soil erosion gradations are closely related to the spatial distribution of rainfall erosivity and land use patterns, and the current soil and water conservation measures are not efficient for high rainfall intensities, and (3) the average sediment yield rate before and after model modification in the most recent 5 years (in addition to 2013) is 4574.62 and 1696.1 Mg km−2, respectively, decreasing by about 35.4 and 78.2 % when compared to the early governance (1995–1998). However, in July 2013 the once-in-a-century storm is the most important reason for maximum sediment yield. Results may provide an effective and scientific basis for soil and water conservation planning and ecological construction of the hilly and gully region, Chinese Loess Plateau.


Water ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 20 ◽  
Author(s):  
Yaping Wang ◽  
Wenzhao Liu ◽  
Gang Li ◽  
Weiming Yan ◽  
Guangyao Gao

The tableland-gully region is one of the main topographic-ecological units in the Chinese Loess Plateau (CLP), and the soil in this region suffers from serious water erosion. In recent years, much work has been conducted to control soil erosion in this area. This paper summarized the development of soil and water conservation researches in the CLP from the bibliometric perspective based on the Science Citation Index (SCI) and Chinese National Knowledge Infrastructure (CNKI) databases. The quantity of SCI literatures has increased rapidly since 2007, with an average annual growth rate of 21.4%, and the quantity of CNKI literatures in the last decade accounted for 62% of the past 30 years. The development trends showed that early SCI research was related to loess geology in the context of ecological remediation, while the CNKI literature focused on agricultural production under comprehensive management. Over time, the research themes of the two databases gradually became unified, i.e., the management of sloping farmland and the improvement of agricultural productivity. Subsequently, the themes gradually extended to the disposition of comprehensive control measures for soil erosion and the environmental effect of agro-fruit ecosystems. The highly cited papers mainly focused on soil reservoir reconstruction, soil erosion factors, and environmental effects of vegetation restoration. Two aspects need further study, including (i) the effect of soil erosion control under different ecological remediation patterns; and, (ii) the ecosystem maintenance mechanism and regulation approaches that are based on the sustainable utilization of soil and water resources in the tableland-gully region of the Loess Plateau.


2007 ◽  
Vol 31 (4) ◽  
pp. 389-403 ◽  
Author(s):  
Liding Chen ◽  
Wei Wei ◽  
Bojie Fu ◽  
Yihe Lü

The Loess Plateau, China, has long been suffering from serious soil erosion. About 2000 years ago, larger areas were used for grain production and soil erosion was thus becoming severe with increase in human activity. Severe soil and water loss led to widespread land degradation. During the past decades, great efforts were made in vegetation restoration to reduce soil erosion. However, the efficiency of vegetation restoration was not as satisfactory as expected due to water shortage. China initiated another state-funded scheme, the `Grain-for-Green' project in 1999, on the Loess Plateau to reduce soil erosion and improve land quality. However, the control of soil erosion effectively by land-use modification raised problems. In this paper, the lessons and experiences regarding soil and water conservation in the Loess Plateau in the past decades are analysed first. Urgent problems are then elaborated, such as the contradiction between land resource and human population, shortage of water both in amount and tempospatial distribution for vegetation growth, weak awareness of the problems of soil conservation by local officials, and poor public participation in soil and water conservation. Finally, suggestions regarding soil and water conservation in the Loess Plateau are given. In order to control soil erosion and improve vegetation, a scientific and detailed land-use plan for the Loess Plateau has to be made, in the first instance, and then planning for wise use of water resources should be undertaken to control mass movement effectively and to improve land productivity. Methods of improving public awareness of environmental conservation and public involvement in vegetation rehabilitation are also important.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11226
Author(s):  
Congjian Sun ◽  
Huixin Hou ◽  
Wei Chen

Soil erosion is a critical environmental problem of the Chinese Loess Plateau (CLP). The effects of vegetation cover on soil erosion reduction under different rainfall types are not well understood especially in the eastern Chinese Loess Plateau (ECLP). In this study, we monitored runoff and sediment yield at the Fengjiagou water and soil conservation station with five types of vegetation cover (arbor trees (ARC), shrubs (SHC), arable (ABC), natural vegetation (NVC), and artificial grass (APC)) and three slope gradients (10°, 15°, and 20°) in the ECLP. Based on long-term monitoring data, five rainfall types were classified by the maximum 30 min rainfall intensity (I30). We also quantitatively revealed the interactive effects of different types precipitation, vegetation cover and slope gradients on regional soil erosion. The results showed that (1) The RII (13 times) and RIII (eight times) type are the most threatening erosive rainfall in this region. (2) The ARC and SHC type were most beneficial for soil and water conservation in the ECLP; The APC and ABC are not conductive to the prevention of regional soil erosion. (3) Runoff and sediment yields increased with the slope gradient. The farmland is vulnerable to soil erosion when the slope gradient exceeds 10°. The results of this study can improve the understanding of regional soil erosion processes on the ECLP and provide useful information for managing regional water and land resources.


2020 ◽  
Author(s):  
shaobo long

<p><strong>The response of extreme rainstorm to global </strong><strong>climate pattern changes in the loess plateau</strong></p><p>Shaobo Long<sup>1,3</sup>、Jianen Gao<sup>1,2,3*</sup>、Huijuan Li<sup>5</sup>、Zhe Gao<sup>4</sup>、minmin Qiang<sup>1,3</sup>、Sixuan Liu<sup>1,3</sup></p><ol><li>Institute of Soil and Water Conservation, Northwest Agriculture and Forestry University, 712100, Yangling, Shaanxi, China.</li> <li>Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, 712100, Yangling, Shaanxi, China.</li> <li>Research Center on Soil and Water Conservation, Ministry of Water Resources, 712100, Yangling, Shannxi, China.</li> <li>College of Water Resources and Architectural Engineering, Northwest Agriculture and Forestry University, 712100, Yangling, Shaanxi, China.</li> <li>Institute of Geographic Sciences and Natural Research, CAS, 100101, Beijing, China.</li> </ol><p><strong>Abstract: </strong>The loess plateau is the region with the most serious soil and water problems in the world, the soil erosion mainly occurs in the season of rainfall, especially the extreme rainstorm has great influence on soil erosion. In recent years, under the background of global climate change, extreme rainstorm occurs frequently in the loess plateau, causes a series of soil damage, was difficult to predict. Therefore, it is a great significance to study the rule of extreme rainstorm for the soil erosion in the loess plateau. Based on the daily rainfall data of 56 meteorological stations and global sea surface temperatures (SST) data in the last 60 years, the effects of El Niño on extreme rainstorm were studied by using empirical orthogonal function (EOF), wavelet transform, and other statistical methods. The results show:</p><ul><li>(1) The extreme rainstorm has obvious spatial distribution characteristics, which decreases gradually from the south to the north of the loess plateau; Temporal variation of extreme rainstorm has obvious decadal oscillation, showing a decreasing trend from 1982 to 2012 and an increasing trend after 2012.</li> <li>(2) There was a significant positive correlation between the time coefficient of EOF1 for SST and the extreme rainstorm (P < 0.05). Wavelet analysis shows that Both extreme rainstorm and SST anomaly have a 30-year cycle, with the time change becoming more dramatic after 2012.</li> <li>(3) El Niño has obvious influence on the extreme rainstorm in the loess plateau region. Extreme rainstorm can be predicted about 1 year in advance by the change of SST anomaly. This is of great significance to the study of extreme rainfall erosion in the loess plateau.</li> </ul><p><strong>Keywords: The loess plateau; Extreme rainstorm; El Niño</strong></p><p><strong>Funding:</strong></p><ol><li>The National key Research and Development Program of China (No.2017YFC0504703).</li> <li>National Natural Science Foundation of China (No. 41877078, 41371276).</li> <li>Knowledge Innovation Program of the Chinese Academy of Sciences (No.A315021615).</li> </ol>


Author(s):  
Tesfaye Yaekob ◽  
Lulseged Tamene ◽  
Solomon G. Gebrehiwot ◽  
Solomon S. Demissie ◽  
Zenebe Adimassu ◽  
...  

Abstract To tackle the problem of soil erosion and moisture stress, the government of Ethiopia introduced a yearly mass campaign where communities get together and implement various soil and water conservation (SWC) and water harvesting (WH) practices. Although the interventions are believed to have reduced soil erosion/sediment yield and enhanced surface and ground water, quantitative information on the impacts of various options at different scales is scarce. The objective of this study was to assess the impacts different land uses, SWC and WH interventions on water and suspended sediment yield (SSY) at plot and watershed scales in the central highlands of Ethiopia. Standard erosion plot experiments and hydrological stations were used to monitor the daily water and SSY during 2014 to 2017. The results show differences between treatments both at plot and watershed scales. Runoff and soil loss were reduced by an average 27 and 37%, respectively due to SWC practices at the plot level. Overall, SWC practices implemented at the watershed level reduced sediment yield by about 74% (in the year 2014), although the magnitude of sediment reduction due to the SWC interventions reduced over time. At both scales it was observed that as the number of years since SWC measures have been in place increased, their effectiveness declined due to the lack of maintenance. This study also revealed that extrapolating of plot data to watershed scale causes over or under estimation of net erosion.


2018 ◽  
Vol 10 (12) ◽  
pp. 4773 ◽  
Author(s):  
Xiaohui Huang ◽  
Lili Wang ◽  
Qian Lu

Analyzing vulnerability and adaptation to soil and water loss is an important part of the study on the human–environment relationship in the Loess Plateau. It has also provided a new perspective for studying the farmers’ adoption behavior of soil and water conservation technology in the soil erosion area of the Loess Plateau. Based on the Turner vulnerability framework, this paper constructs a household-scale index system of soil and water loss vulnerability in the Loess Plateau and evaluates the soil and water loss vulnerability in the Loess Plateau using the field survey data of the Loess Plateau applied entropy method. Finally, we use the binary logistic model to estimate the impact mechanism of farmers’ soil erosion vulnerability on farmers’ adoption behavior of soil and water conservation technology. The main conclusions are as follows: (1) In the total sample, susceptibility > exposure > adaptability, whereas in the Shaanxi and Gansu subsample, susceptibility > adaptability > exposure. The Ningxia subsample was similar to the total sample. For each index, Ningxia > Gansu > Shaanxi; (2) The exposure and susceptibility of soil and water loss have a positive impact on farmers’ adoption behavior of soil and water conservation technology, and natural capital has a positive impact on farmers’ adoption behavior of soil and water conservation technology. Physical capital has a positive impact on farmers’ adoption behavior of biological measures. Financial capital has a negative impact on farmers’ adoption behavior of biological measures and farming measures. Social capital has a positive impact on farmers’ adoption behavior of engineering measures and biological measures; (3) Overall, the marginal effect of the adoption behavior of farmers’ soil and water conservation techniques, adaptability > susceptibility > exposure. Therefore, it is necessary to strengthen the monitoring of soil and water loss, encourage the government and farmers to respond in time, and reduce the losses caused by soil erosion. Enriching the capital endowment of farmers, breaking through the endowment restriction of farmers’ adoption of soil and water conservation technology.


Sign in / Sign up

Export Citation Format

Share Document