scholarly journals The Subduction Dichotomy of Strong Plates and Weak Slabs

Author(s):  
Robert I. Petersen ◽  
Dave R. Stegman ◽  
Paul J. Tackley

Abstract. A key element of plate tectonics on Earth is that the lithosphere is subducting into the mantle. Subduction results from forces that bend and pull the lithosphere into the interior of the Earth. Once subducted, lithospheric slabs are further modified by dynamic forces in the mantle and their sinking is inhibited by the increase in viscosity of the lower mantle. These forces are resisted by the material strength of the lithosphere. Using geodynamic models we investigate several subduction models wherein we control material strength by setting a maximum viscosity for the surface plates and the subducted slabs independently. We find that the models which produce results most analogous to observations of subduction on Earth are characterized by a dichotomy of lithosphere strengths. These models have strong lithospheric plates at the surface which promotes Earth-like single-sided subduction. At the same time these models have weakened lithospheric subducted slabs which pile, bend or lie flat at the top of the lower mantle reproducing the spectrum of slab morphologies observed on Earth.

Solid Earth ◽  
2017 ◽  
Vol 8 (2) ◽  
pp. 339-350 ◽  
Author(s):  
Robert I. Petersen ◽  
Dave R. Stegman ◽  
Paul J. Tackley

Abstract. A key element of plate tectonics on Earth is that the lithosphere is subducting into the mantle. Subduction results from forces that bend and pull the lithosphere into the interior of the Earth. Once subducted, lithospheric slabs are further modified by dynamic forces in the mantle, and their sinking is inhibited by the increase in viscosity of the lower mantle. These forces are resisted by the material strength of the lithosphere. Using geodynamic models, we investigate several subduction models, wherein we control material strength by setting a maximum viscosity for the surface plates and the subducted slabs independently. We find that models characterized by a dichotomy of lithosphere strengths produce a spectrum of results that are comparable to interpretations of observations of subduction on Earth. These models have strong lithospheric plates at the surface, which promotes Earth-like single-sided subduction. At the same time, these models have weakened lithospheric subducted slabs which can more easily bend to either lie flat or fold into a slab pile atop the lower mantle, reproducing the spectrum of slab morphologies that have been interpreted from images of seismic tomography.


Author(s):  
David Vaughan

‘Minerals and the interior of the Earth’ looks at the role of minerals in plate tectonics during the processes of crystallization and melting. The size and range of minerals formed are dependent on the temperature and pressure of the magma during its movement through the crust. The evolution of the continental crust also involves granite formation and processes of metamorphism. Our understanding of the interior of the Earth is based on indirect evidence, mainly the study of earthquake waves. The Earth consists of concentric shells: a solid inner core; liquid outer core; a solid mantle divided into a lower mantle, a transition zone, and an upper mantle; and then the outer rigid lithosphere.


2008 ◽  
Vol 7 (2) ◽  
pp. 157-167 ◽  
Author(s):  
Helge Hellevang

AbstractHeat produced in the mantle and core of the Earth by the decay of radioactive elements and mineral fusion results in large-scale mantle convection. The outer shell of the Earth that floats on the convective mantle is divided into rigid lithospheric plates. Subduction of dense cold plates into the mantle leads to plate tectonics. At divergent plate margins, heat is dissipated through hydrothermal convection cells. As ocean water is entrained into hydrothermal cells it interacts with fresh magmatic rocks and liberates ferrous iron. This iron reduces the ocean water to such an extent that it decomposes and forms hydrogen. Molecular hydrogen, as the most reduced component in the system, forms a basal component to a deep dark biosphere powered by metastable redox gradients. In this paper we review the driving force behind a hydrogen-driven deep biosphere. We present abundant observations of hydrogen produced at natural hydrothermal settings as well as in laboratory experiments. The key mineral reactions responsible for the bulk of this hydrogen production are then presented. A division of the reaction progression into an oxidized state and a reduced state is suggested. The amount of hydrogen produced is insignificant in the oxidized state whereas it becomes proportional to the amount of ferrous iron oxidized in the reduced state. The bulk of basalt-hosted aquifers are expected to reside in the oxidized state because of the low content of ferrous minerals, whereas abundant olivine in ultramafic-hosted systems is responsible for large-scale hydrogen production. Today the majority of the seafloor is basaltic. The Archean seafloor on the other hand consisted of fewer ultramafic exposures, but was dominated by ultramafic magnesium-rich lavas with a higher potential for hydrogen production than the present seafloor.


2020 ◽  
Author(s):  
Jun Yan ◽  
Maxim D. Ballmer ◽  
Paul J. Tackley

<p>A better understanding of the Earth’s compositional structure is needed to place the geochemical record of surface rocks into the context of Earth accretion and evolution. Cosmochemical constraints imply that lower-mantle rocks may be enriched in silica relative to upper-mantle pyrolite, whereas geophysical observations support whole-mantle convection and mixing. To resolve this discrepancy, it has been suggested that subducted mid-ocean ridge basalt (MORB) segregates from subducted harzburgite to accumulate in the mantle transition zone (MTZ) and/or the lower mantle. However, the key parameters that control basalt segregation and accumulation remain poorly constrained. Here, we use global-scale 2D thermochemical convection models to investigate the influence of mantle-viscosity profile, planetary-tectonic style and bulk composition on the evolution and distribution of mantle heterogeneity. Our models robustly predict that, for all cases with Earth-like tectonics, a basalt-enriched reservoir is formed in the MTZ, and a harzburgite-enriched reservoir is sustained at 660~800 km depth, despite ongoing whole-mantle circulation. The enhancement of basalt and harzburgite in and beneath the MTZ, respectively, are laterally variable, ranging from ~30% to 50% basalt fraction, and from ~40% to 80% harzburgite enrichment relative to pyrolite. Models also predict an accumulation of basalt near the core mantle boundary (CMB) as thermochemical piles, as well as moderate enhancement of most of the lower mantle by basalt. While the accumulation of basalt in the MTZ does not strongly depend on the mantle-viscosity profile (explained by a balance between basalt delivery by plumes and removal by slabs at the given MTZ capacity), that of the lowermost mantle does: lower-mantle viscosity directly controls the efficiency of basalt segregation (and entrainment) near the CMB; upper-mantle viscosity has an indirect effect through controlling slab thickness. Finally, the composition of the bulk-silicate Earth may be shifted relative to that of upper-mantle pyrolite, if indeed significant reservoirs of basalt exist in the MTZ and lower mantle.</p>


Author(s):  
Jan KOZIAR

Morgan (1968) tested the supposed Eulerian motion of lithospheric plates by calculation on a circuit around the Indian Ocean triple junction. The present analysis performed on a physical model shows that on a non-expanding Earth, the reconstructed Southwest Indian Ocean Ridge fails to close as it should according to the allegedly positive result of Morgan’s test, which is thereby shown to be in error. Wedge-shaped openings, appearing along all arms of the Indian Ocean triple junction during its reconstruction, are examples of Carey’s artifactual “gaping gores” which in general are one of the proofs of the Earth’s expansion. A global plan of plate motions based on the Eulerian principle is impossible and confirms Carey’s Arctic Paradox which is other proof of the expansion of the Earth. Space geodesy testing of expanding Earth is in fact testing of possible expansion of the plate tectonics model, not the real Earth. V-shaped openings between plates, when real, are not of Eulerian origin but are large sphenochasms in Carey’s sense caused by an expanding interior of the Earth.


2020 ◽  
Vol 42 (3) ◽  
pp. 271-282
Author(s):  
OLEG IVANOV

The general characteristics of planetary systems are described. Well-known heat sources of evolution are considered. A new type of heat source, variations of kinematic parameters in a dynamical system, is proposed. The inconsistency of the perovskite-post-perovskite heat model is proved. Calculations of inertia moments relative to the D boundary on the Earth are given. The 9 times difference allows us to claim that the sliding of the upper layers at the Earth's rotation speed variations emit heat by viscous friction.This heat is the basis of mantle convection and lithospheric plate tectonics.


1999 ◽  
Vol 354 (1392) ◽  
pp. 1915-1919 ◽  
Author(s):  
Claude Allègre ◽  
Vincent Courtillot

The 20th century has been a century of scientific revolutions for many disciplines: quantum mechanics in physics, the atomic approach in chemistry, the nonlinear revolution in mathematics, the introduction of statistical physics. The major breakthroughs in these disciplines had all occurred by about 1930. In contrast, the revolutions in the so–called natural sciences, that is in the earth sciences and in biology, waited until the last half of the century. These revolutions were indeed late, but they were no less deep and drastic, and they occurred quite suddenly. Actually, one can say that not one but three revolutions occurred in the earth sciences: in plate tectonics, planetology and the environment. They occurred essentially independently from each other, but as time passed, their effects developed, amplified and started interacting. These effects continue strongly to this day.


Author(s):  
Peter A. Cawood ◽  
Chris J. Hawkesworth ◽  
Sergei A. Pisarevsky ◽  
Bruno Dhuime ◽  
Fabio A. Capitanio ◽  
...  

Plate tectonics, involving a globally linked system of lateral motion of rigid surface plates, is a characteristic feature of our planet, but estimates of how long it has been the modus operandi of lithospheric formation and interactions range from the Hadean to the Neoproterozoic. In this paper, we review sedimentary, igneous and metamorphic proxies along with palaeomagnetic data to infer both the development of rigid lithospheric plates and their independent relative motion, and conclude that significant changes in Earth behaviour occurred in the mid- to late Archaean, between 3.2 Ga and 2.5 Ga. These data include: sedimentary rock associations inferred to have accumulated in passive continental margin settings, marking the onset of sea-floor spreading; the oldest foreland basin deposits associated with lithospheric convergence; a change from thin, new continental crust of mafic composition to thicker crust of intermediate composition, increased crustal reworking and the emplacement of potassic and peraluminous granites, indicating stabilization of the lithosphere; replacement of dome and keel structures in granite-greenstone terranes, which relate to vertical tectonics, by linear thrust imbricated belts; the commencement of temporally paired systems of intermediate and high dT/dP gradients, with the former interpreted to represent subduction to collisional settings and the latter representing possible hinterland back-arc settings or ocean plateau environments. Palaeomagnetic data from the Kaapvaal and Pilbara cratons for the interval 2780–2710 Ma and from the Superior, Kaapvaal and Kola-Karelia cratons for 2700–2440 Ma suggest significant relative movements. We consider these changes in the behaviour and character of the lithosphere to be consistent with a gestational transition from a non-plate tectonic mode, arguably with localized subduction, to the onset of sustained plate tectonics. This article is part of a discussion meeting issue ‘Earth dynamics and the development of plate tectonics'.


Author(s):  
Elisabeth Ervin-Blankenheim

This book is a scientific, historical, and philosophical narrative for general readers that explores the relationship between humans and the Earth and the geologic principles of time, plate tectonics, and change in life forms. Illustrated with striking historical maps, figures, and pictures, this comprehensive work can be read as a thrilling biography of the Earth itself, including narrative sections on the lives of pioneering geologists; the reality and sublimity of geologic time; the birth, destruction, and rebirth of the planet and its atmosphere over repeated cycles spanning some 4-plus billion years; the science underlying both mountain building and oceanic evolution; the influence of climate change and species extinction on the development of the Earth; and the interplay between not only how Earth has influenced life but how life, in turn, has distinctly shaped our planet.


2021 ◽  
Author(s):  
Lindy Elkins-Tanton ◽  
Jenny Suckale ◽  
Sonia Tikoo

<p>Rocky planets go through at least one and likely multiple magma ocean stages, produced by the giant impacts of accretion. Planetary data and models show that giant impacts do not dehydrate either the mantle or the atmosphere of their target planets. The magma ocean liquid consists of melted target material and melted impactor, and so will be dominated by silicate melt, and also contain dissolved volatiles including water, carbon, and sulfur compounds.</p><p>As the magma ocean cools and solidifies, water and other volatiles will be incorporated into the nominally anhydrous mantle phases up to their saturation limits, and will otherwise be enriched in the remaining, evolving magma ocean liquids. The water content of the resulting cumulate mantle is therefore the sum of the traces in the mineral grains, and any water in trapped interstitial liquids. That trapped liquid fraction may in fact be by far the largest contributor to the cumulate water budget.</p><p>The water and other dissolved volatiles in the evolving liquids may quickly reach the saturation limit of magmas near the surface, where pressure is low, but degassing the magma ocean is likely more difficult than has been assumed in some of our models. To degas into the atmosphere, the gases must exsolve from the liquid and form bubbles, and those bubbles must be able to rise quickly enough to avoid being dragged down by convection and re-dissolved at higher pressures. If bubbles are buoyant enough (that is, large enough) to decouple from flow and rise, then they are also dynamically unstable and liable to be torn into smaller bubbles and re-entrained. This conundrum led to the hypothesis that volatiles do not significantly degas until a high level of supersaturation is reached, and the bubbles form a buoyant layer and rise in diapirs in a continuum dynamics sense. This late degassing would have the twin effects of increasing the water content of the cumulates, and of speeding up cooling and solidification of the planet.</p><p>Once the mantle is solidified, the timeclock until the start of plate tectonics begins. Modern plate tectonics is thought to rely on water to lower the viscosity of the asthenosphere, but plate tectonics is also thought to be the process by which water is brought into the mantle. Magma ocean solidification, however, offers two relevant processes. First, following solidification the cumulate mantle is gravitationally unstable and overturns to stability, carrying water-bearing minerals from the upper mantle through the transition zone and into the lower mantle. Upon converting to lower-mantle phases, these minerals will release their excess water, since lower mantle phases have lower saturation limits, thus fluxing the upper mantle with water. Second, the mantle will be near its solidus temperature still, and thus its viscosity will be naturally low. When fluxed with excess water, the upper mantle would be expected to form a low degree melt, which if voluminous enough with rise to help form the earliest crust, and if of very low degree, will further reduce the viscosity of the asthenosphere.</p>


Sign in / Sign up

Export Citation Format

Share Document