scholarly journals Nitrogen Dynamics in an Established Alfalfa Field under Low Biochar Application Rates

Soil Systems ◽  
2019 ◽  
Vol 3 (4) ◽  
pp. 77 ◽  
Author(s):  
Katherine S. Rocci ◽  
Steven J. Fonte ◽  
Joseph C. von Fischer ◽  
M. Francesca Cotrufo

Sustainable nitrogen (N) management in agroecosystems is crucial for supporting crop production and reducing deleterious N losses. Biochar application with N-fixing legumes offers promise for increasing soil N retention and input. Strategic, low application rates (112 kg ha−1) of pine and coconut feedstock biochars were tested in an established alfalfa (Medicago sativa) field. Soil inorganic N and plant growth, N concentrations, and δ15N were monitored over a growing season to follow mineral N availability, and plant N uptake and sourcing. Microbial and gene abundance and enzyme activity were measured to assess the potential for N cycling processes to occur. Biochar application had minimal effects on measured parameters. However, significant temporal dynamics in N cycling and correlations between alfalfa δ15N and soil N availability indicate differing plant N sourcing over time. Our findings indicate that low application rates of biochar in established alfalfa fields do not significantly affect N cycling, and that managing alfalfa to maximize N fixation, for example by intercropping, may be a better solution to increase N stocks and retention in this system. To determine when biochar can be beneficial for alfalfa N cycling, we need additional research to assess various economically-feasible biochar application rates at different alfalfa growth stages.

2013 ◽  
Vol 726-731 ◽  
pp. 4411-4417 ◽  
Author(s):  
Qing Wen Zhang ◽  
Zheng Li Yang ◽  
Ai Ping Zhang ◽  
Ming Wang

The SPAD was shown as a diagnostic tool to assess the nitrogen (N) nutrition status. The objective of this study is to evaluate the performance of SPAD as N nutrition status for rice. We conducted two years field experiment in the Ningxia irrigation area. Five N application rates were applied to rice to obtain contrasting conditions of N availability. The leaves N concentrations, SPAD and N uptake by rice were assessed. The results showed that response of SPAD to N uptake rate depends on the developmental stage of the rice. The peak periods for N uptake by rice were the jointing-booting stage to the flowering stage. Significant regression equations were established between SPAD and N uptake. The SPAD meter was demonstrated to be a useful nondestructive system to aid in the evaluation of N nutrition status in rice. However, consistency in sample seasonal timing may necessitate to correlate SPAD values.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 492g-492
Author(s):  
Oswaldo A. Rubio ◽  
Patrick H. Brown ◽  
Steven A. Weinbaum

Leaf N concentrations (% dry wt) appear relatively insensitive to high levels of applied fertilizer N (Weinbaum et al, HortTechnology 1992). This insensitivity may be attributable to growth dilation, lack of additional tree N uptake, a finite capacity of leaves to accumulate additional N or our inhability to resolve a limited increment. Our objective was to asses the relative accumulation of mobile forms of N (NO3, NH4 and amino acids) relative to a total N over a range of fertilizer N application rates in 3 year old, field-grown “Fantasia” nectarine trees. Between 0 and 136 Kg N/Ha/Yr we observed a linear relationship between N supply and all N fractions. Above 136 Kg N/Ha/Yr leaf concentrations of amino acids and total N remined constant, but NO3 and NH4 accumulation continued. These results suggest that leaf concentration of NO3 and NH4 are more sensitive indicators of soil N availability and tree N uptake than was total leaf N concentration.


2021 ◽  
Vol 5 ◽  
Author(s):  
Michael Udvardi ◽  
Frederick E. Below ◽  
Michael J. Castellano ◽  
Alison J. Eagle ◽  
Ken E. Giller ◽  
...  

Nitrogen (N) is an essential but generally limiting nutrient for biological systems. Development of the Haber-Bosch industrial process for ammonia synthesis helped to relieve N limitation of agricultural production, fueling the Green Revolution and reducing hunger. However, the massive use of industrial N fertilizer has doubled the N moving through the global N cycle with dramatic environmental consequences that threaten planetary health. Thus, there is an urgent need to reduce losses of reactive N from agriculture, while ensuring sufficient N inputs for food security. Here we review current knowledge related to N use efficiency (NUE) in agriculture and identify research opportunities in the areas of agronomy, plant breeding, biological N fixation (BNF), soil N cycling, and modeling to achieve responsible, sustainable use of N in agriculture. Amongst these opportunities, improved agricultural practices that synchronize crop N demand with soil N availability are low-hanging fruit. Crop breeding that targets root and shoot physiological processes will likely increase N uptake and utilization of soil N, while breeding for BNF effectiveness in legumes will enhance overall system NUE. Likewise, engineering of novel N-fixing symbioses in non-legumes could reduce the need for chemical fertilizers in agroecosystems but is a much longer-term goal. The use of simulation modeling to conceptualize the complex, interwoven processes that affect agroecosystem NUE, along with multi-objective optimization, will also accelerate NUE gains.


2021 ◽  
Vol 13 (10) ◽  
pp. 5649
Author(s):  
Giovani Preza-Fontes ◽  
Junming Wang ◽  
Muhammad Umar ◽  
Meilan Qi ◽  
Kamaljit Banger ◽  
...  

Freshwater nitrogen (N) pollution is a significant sustainability concern in agriculture. In the U.S. Midwest, large precipitation events during winter and spring are a major driver of N losses. Uncertainty about the fate of applied N early in the growing season can prompt farmers to make additional N applications, increasing the risk of environmental N losses. New tools are needed to provide real-time estimates of soil inorganic N status for corn (Zea mays L.) production, especially considering projected increases in precipitation and N losses due to climate change. In this study, we describe the initial stages of developing an online tool for tracking soil N, which included, (i) implementing a network of field trials to monitor changes in soil N concentration during the winter and early growing season, (ii) calibrating and validating a process-based model for soil and crop N cycling, and (iii) developing a user-friendly and publicly available online decision support tool that could potentially assist N fertilizer management. The online tool can estimate real-time soil N availability by simulating corn growth, crop N uptake, soil organic matter mineralization, and N losses from assimilated soil data (from USDA gSSURGO soil database), hourly weather data (from National Weather Service Real-Time Mesoscale Analysis), and user-entered crop management information that is readily available for farmers. The assimilated data have a resolution of 2.5 km. Given limitations in prediction accuracy, however, we acknowledge that further work is needed to improve model performance, which is also critical for enabling adoption by potential users, such as agricultural producers, fertilizer industry, and researchers. We discuss the strengths and limitations of attempting to provide rapid and cost-effective estimates of soil N availability to support in-season N management decisions, specifically related to the need for supplemental N application. If barriers to adoption are overcome to facilitate broader use by farmers, such tools could balance the need for ensuring sufficient soil N supply while decreasing the risk of N losses, and helping increase N use efficiency, reduce pollution, and increase profits.


SOIL ◽  
2015 ◽  
Vol 1 (1) ◽  
pp. 235-256 ◽  
Author(s):  
J. W. van Groenigen ◽  
D. Huygens ◽  
P. Boeckx ◽  
Th. W. Kuyper ◽  
I. M. Lubbers ◽  
...  

Abstract. The study of soil N cycling processes has been, is, and will be at the centre of attention in soil science research. The importance of N as a nutrient for all biota; the ever-increasing rates of its anthropogenic input in terrestrial (agro)ecosystems; its resultant losses to the environment; and the complexity of the biological, physical, and chemical factors that regulate N cycling processes all contribute to the necessity of further understanding, measuring, and altering the soil N cycle. Here, we review important insights with respect to the soil N cycle that have been made over the last decade, and present a personal view on the key challenges of future research. We identify three key challenges with respect to basic N cycling processes producing gaseous emissions: 1. quantifying the importance of nitrifier denitrification and its main controlling factors; 2. characterizing the greenhouse gas mitigation potential and microbiological basis for N2O consumption; 3. characterizing hotspots and hot moments of denitrification Furthermore, we identified a key challenge with respect to modelling: 1. disentangling gross N transformation rates using advanced 15N / 18O tracing models Finally, we propose four key challenges related to how ecological interactions control N cycling processes: 1. linking functional diversity of soil fauna to N cycling processes beyond mineralization; 2. determining the functional relationship between root traits and soil N cycling; 3. characterizing the control that different types of mycorrhizal symbioses exert on N cycling; 4. quantifying the contribution of non-symbiotic pathways to total N fixation fluxes in natural systems We postulate that addressing these challenges will constitute a comprehensive research agenda with respect to the N cycle for the next decade. Such an agenda would help us to meet future challenges on food and energy security, biodiversity conservation, water and air quality, and climate stability.


1996 ◽  
Vol 74 (1) ◽  
pp. 84-90 ◽  
Author(s):  
Joshua P. Schimel ◽  
Keith Van Cleve ◽  
Rex G. Cates ◽  
Thomas P. Clausen ◽  
Paul B. Reichardt

The transition from alder (Alnus tenuifolia) to balsam poplar (Populus balsamifera) is a critical turning point in primary succession on river floodplains in interior Alaska. Associated with the change in plant species are large changes in N cycling. N-fixation and nitrification decrease and the system becomes N-limited, with NH4+ dominating the inorganic N pool. Balsam poplar leaves contain large quantities of tannins and low molecular weight phenolic compounds. We evaluated the effect of these compounds on microbial respiration and N cycling in laboratory assays on soils from an alder-dominated site. Plant compounds were purified and applied to silica gel as an inert carrier. Both tannins and phenolics caused net N-immobilization over a 30-day assay. However, tannins inhibited respiration while phenolics stimulated it. There were no specific effects on nitrification. Thus, tannins acted as a general microbial inhibitor, while phenolics acted as a growth substrate. By inhibiting mineralization while stimulating immobilization, poplar secondary compounds may reduce soil N-availability during the transition betwen alder and poplar stages in succession. Keywords: respiration, mineralization, tannins, secondary chemicals, succession, plant–microbe interactions.


2013 ◽  
Vol 59 (No. 6) ◽  
pp. 235-240 ◽  
Author(s):  
Bordoloi LJ ◽  
Singh AK ◽  
Manoj-Kumar ◽  
Patiram ◽  
S. Hazarika

Plant&rsquo;s nitrogen (N) requirement that is not fulfilled by available N in soil has to be supplied externally through chemical fertilizers. A reliable estimate of soil N-supplying capacity (NSC) is therefore essential for efficient fertilizer use. In this study involving a pot experiment with twenty acidic soils varying widely in properties, we evaluated six chemical indices of soil N-availability viz. organic carbon (C<sub>org</sub>), total N (N<sub>tot</sub>), acid and alkaline-KMnO<sub>4</sub> extractable-N, hot KCl extractable-N (KCl-N) and phosphate-borate buffer extractable-N (PBB-N), based on their strength of correlation with available-N values obtained through aerobic incubation (AI-N) and anaerobic incubation (ANI-N), and also with the dry matter yield (DMY), N percentage and plant (maize) N uptake (PNU). In general, the soils showed large variability in NSC as indicated by variability in PNU which ranged from 598 to 1026 mg/pot. Correlations of the N-availability indices with AI-N and ANI-N decreased in the order: PBB-N (r = 0.784** and 0.901**) &gt; KCl-N (r = 0.773** and 0.743**) &gt; acid KMnO<sub>4</sub>-N (r = 0.575** and 0.651**) &ge; C<sub>org</sub> (r = 0.591** and 0.531**) &ge; alkaline KMnO<sub>4</sub>-N (r = 0.394** and 0.548**) &gt; N<sub>tot</sub> (r = 0.297** and 0.273*). Of all the indices evaluated, PBB-N showed the best correlations with plant parameters as well (r = 0.790** and 0.793** for DMY and PNU, respectively). Based on the highest correlations of PBB-N with biological indices as well as plant responses, we propose PBB-N as an appropriate index of N-availability in the acidic soils of India and other regions with similar soils.


1998 ◽  
Vol 49 (8) ◽  
pp. 1267 ◽  
Author(s):  
A. Kamoshita ◽  
R. C. Muchow ◽  
M. Cooper ◽  
S. Fukai

In Australia, grain sorghum [Sorghum bicolor (L.) Moench] hybrids are often grown under conditions of low soil nitrogen (N) availability with suboptimal levels of N fertiliser supplied. However, little is known about the traits that contribute to sorghum hybrid performance in environments with low available N. We examined plant traits that may contribute to adaptation of sorghum to low soil N conditions, and the influence of genotype × N environment interactions on yield and grain N concentration. Two experiments were conducted using 3–6 hybrids with similar phenology. Three N fertiliser application rates (0, 60, and 240 kg/ha) were used in Expt 1, and 2 application rates (0 and 60 kg/ha) were used in Expt 2. Hybrid yield was associated with plant N content at maturity. The ability of a hybrid to take up N continuously during grain filling, under N limiting conditions, was identified as an important component contributing to high yield. In the non-fertilised treatment of Expt 2, where plants suffered the most severe N limitation before anthesis (e.g. total plant N content at anthesis <3 g/m2), hybrid yield was associated with biomass production and duration of effective grain filling. The dependence of the expression of the higher N uptake trait on N availability and other environmental factors resulted in genotype × environment interactions for yield. Differences among hybrids in leaf senescence and grain growth rate had little effect on yield. Genotypic variation for grain N concentration was consistent across experiments for hybrids with and without the staygreen attribute. In Expt 2 the magnitude of leaf senescence and amount of N mobilised from leaf to grain were greater at 60 kg N/ha than in the non-fertilised treatment. In addition, the staygreen hybrid 72389–1-1–3/QL36 had a slower rate of leaf senescence, took up larger amounts of N after anthesis, and had higher grain N concentration (1·07%) than the senescent hybrids ATx623/RTx430 (0·95%) and QL41/69264–2-2–2 (0·90%).


1997 ◽  
Vol 48 (3) ◽  
pp. 305 ◽  
Author(s):  
I. C. R. Holford ◽  
G. J. Crocker

Six treatments were compared for their effects on wheat yields, nitrogen (N) uptake, protein content, and fertiliser N requirements in a long-term rotation study on a black earth and a red clay in northern New South Wales. Three of the treatments were lucerne, subterranean clover, and snail medic, all grown simultaneously from 1988 to 1990 and all followed by 3 years of wheat. The other 3 treatments were biennial rotations of chickpea–wheat and long-fallow–wheat as well as a continuous wheat monoculture, all lasting 6 years. With the exception of the first wheat crop, which experienced very low growing-season rainfall, lucerne was more beneficial than other legumes to following wheat crops in terms of yield, protein content, and fertiliser N requirement. Clover closely followed lucerne in the magnitude of its positive effects, whereas medic and chickpea produced much smaller effects. Because of the amount of N removed in the chickpea grain, it appeared that the small positive effects of chickpea were due to soil N sparing or rapid mineralisation from crop residues rather than any net contribution of N fixation to soil N accretion. Average yields of the 3 wheat crops following lucerne and clover were much higher than average yields 20 years previously following lucerne, even though average yields of continuously grown wheat have declined over the past 20 years. However, lucerne eliminated the need for N fertiliser for no more than 2 following wheat crops, and clover for only the first wheat crop. It appears that the longer duration of lucerne benefits reported in earlier studies was due to the higher background soil N levels as well as the lower yield potential in the earlier years. Nevertheless, lucerne lowered the fertiliser requirement of the third wheat crop by more than 50%. In contrast to lucerne, annual legumes are probably most beneficial if grown in alternate years with wheat. The large benefits of long fallowing particularly on the black earth were apparently caused by its enhancement of soil moisture and mineral N accumulation. However, these N effects were surprisingly large considering the degree of depletion of organic matter in long-fallowed soils.


Author(s):  
Olivia H. Cousins ◽  
Trevor P. Garnett ◽  
Amanda Rasmussen ◽  
Sacha J. Mooney ◽  
Ronald J. Smernik ◽  
...  

AbstractDue to climate change, water availability will become increasingly variable, affecting nitrogen (N) availability. Therefore, we hypothesised watering frequency would have a greater impact on plant growth than quantity, affecting N availability, uptake and carbon allocation. We used a gravimetric platform, which measures the unit of volume per unit of time, to control soil moisture and precisely compare the impact of quantity and frequency of water under variable N levels. Two wheat genotypes (Kukri and Gladius) were used in a factorial glasshouse pot experiment, each with three N application rates (25, 75 and 150 mg N kg−1 soil) and five soil moisture regimes (changing water frequency or quantity). Previously documented drought tolerance, but high N use efficiency, of Gladius as compared to Kukri provides for potentially different responses to N and soil moisture content. Water use, biomass and soil N were measured. Both cultivars showed potential to adapt to variable watering, producing higher specific root lengths under low N coupled with reduced water and reduced watering frequency (48 h watering intervals), or wet/dry cycling. This affected mineral N uptake, with less soil N remaining under constant watering × high moisture, or 48 h watering intervals × high moisture. Soil N availability affected carbon allocation, demonstrated by both cultivars producing longer, deeper roots under low N. Reduced watering frequency decreased biomass more than reduced quantity for both cultivars. Less frequent watering had a more negative effect on plant growth compared to decreasing the quantity of water. Water variability resulted in differences in C allocation, with changes to root thickness even when root biomass remained the same across N treatments. The preferences identified in wheat for water consistency highlights an undeveloped opportunity for identifying root and shoot traits that may improve plant adaptability to moderate to extreme resource limitation, whilst potentially encouraging less water and nitrogen use.


Sign in / Sign up

Export Citation Format

Share Document