scholarly journals Ice-stream flow switching by up-ice propagation of instabilities along glacial marginal troughs

2019 ◽  
Vol 13 (3) ◽  
pp. 981-996 ◽  
Author(s):  
Etienne Brouard ◽  
Patrick Lajeunesse

Abstract. Ice-stream networks constitute the arteries of ice sheets through which large volumes of glacial ice are rapidly delivered from the continent to the ocean. Modifications in ice-stream networks have a major impact on ice sheet mass balance and global sea level. Reorganizations in the drainage network of ice streams have been reported in both modern and paleo-ice sheets and usually result in ice streams switching their trajectory and/or shutting down. While some hypotheses for the reorganization of ice streams have been proposed, the mechanisms that control the switching of ice streams remain poorly understood and documented. Here, we interpret a flow switch in an ice-stream system that occurred prior to the last glaciation on the northeastern Baffin Island shelf (Arctic Canada) through glacial erosion of a marginal trough, i.e., deep parallel-to-coast bedrock moats located up-ice of a cross-shelf trough. Shelf geomorphology imaged by high-resolution swath bathymetry and seismo-stratigraphic data in the area indicate the extension of ice streams from Scott and Hecla & Griper troughs towards the interior of the Laurentide Ice Sheet. Up-ice propagation of ice streams through a marginal trough is interpreted to have led to the piracy of the neighboring ice catchment that in turn induced an adjacent ice-stream flow switch and shutdown. These results suggest that competition for ice discharge between the two ice streams, which implies piracy of ice drainage basins via marginal troughs, was the driving mechanism behind ice flow switching. In turn, the enlargement of the ice catchment by piracy increased the volume and discharge of Scott Ice Stream, allowing it to erode deeper and flow farther on the continental shelf. Similar trough systems observed on many other glaciated continental shelves may be the product of such competition for ice discharge between catchments.

2018 ◽  
Author(s):  
Etienne Brouard ◽  
Patrick Lajeunesse

Abstract. Ice stream networks constitute the arteries of ice sheets through which large volumes of glacial ice are rapidly delivered from the continent to the ocean. Modifications in ice stream networks have major impact on ice sheet mass balance and global sea level. However, the mechanisms controlling ice stream switching remain poorly understood. Here, we report a flow-switch in an ice stream system that occurred during the Pliocene-Pleistocene on the northeastern Baffin Island shelf (Arctic Canada) through glacial erosion of a marginal trough. We find that up-ice propagation of ice streams through marginal troughs can lead to the piracy of neighbouring ice-catchments, which in turn induce an adjacent ice stream flow-switch and shutdown. Similar trough systems observed on many other glaciated continental shelves may be the product of such a competition for ice discharge between catchments.


2014 ◽  
Vol 10 (5) ◽  
pp. 1817-1836 ◽  
Author(s):  
F. A. Ziemen ◽  
C. B. Rodehacke ◽  
U. Mikolajewicz

Abstract. In the standard Paleoclimate Modelling Intercomparison Project (PMIP) experiments, the Last Glacial Maximum (LGM) is modeled in quasi-equilibrium with atmosphere–ocean–vegetation general circulation models (AOVGCMs) with prescribed ice sheets. This can lead to inconsistencies between the modeled climate and ice sheets. One way to avoid this problem would be to model the ice sheets explicitly. Here, we present the first results from coupled ice sheet–climate simulations for the pre-industrial times and the LGM. Our setup consists of the AOVGCM ECHAM5/MPIOM/LPJ bidirectionally coupled with the Parallel Ice Sheet Model (PISM) covering the Northern Hemisphere. The results of the pre-industrial and LGM simulations agree reasonably well with reconstructions and observations. This shows that the model system adequately represents large, non-linear climate perturbations. A large part of the drainage of the ice sheets occurs in ice streams. Most modeled ice stream systems show recurring surges as internal oscillations. The Hudson Strait Ice Stream surges with an ice volume equivalent to about 5 m sea level and a recurrence interval of about 7000 yr. This is in agreement with basic expectations for Heinrich events. Under LGM boundary conditions, different ice sheet configurations imply different locations of deep water formation.


1999 ◽  
Vol 28 ◽  
pp. 67-74 ◽  
Author(s):  
Chris R. Stokes ◽  
Chris D. Clark

AbstractIce streams are critical regulatory mechanisms in contemporary ice sheets. It has been inferred that they also had a significant effect on the dynamics of former ice sheets. Subsequently, many people have invoked their widespread occurrence from a variety of formerly glaciated areas. Hypothesised locations, however, have often outweighed meaningful evidence. This paper addresses the problem, using the characteristics of contemporary ice streams as a basis for their identification from former ice-sheet beds. A convergence of knowledge gained from contemporary ice-stream research, coupled with theories of glacial geomorphology, allows several geomorphological criteria to be identified as suggestive signatures of ice-stream activity. It is envisaged that the geomorphological criteria developed here will introduce a more objective approach to the study of former ice streams. The criteria are used to construct conceptual land-system models of the beds of former ice streams, and it is hoped such models can provide an observational template upon which hypotheses of former ice streams can be better based.


2013 ◽  
Vol 1 (1) ◽  
pp. 277-309
Author(s):  
H. Patton ◽  
A. Hubbard ◽  
T. Bradwell ◽  
N. F. Glasser ◽  
M. J. Hambrey ◽  
...  

Abstract. Understanding the retreat behaviour of past marine-ice sheets provides vital context to accurate assessment of the present stability and long-term response of contemporary polar-ice sheets to climate and oceanic warming. Here new multibeam swath-bathymetry data and sedimentological analysis are combined with high resolution ice-sheet modelling to reveal complex landform assemblages and process-dynamics associated with deglaciation of the British-Celtic Ice Sheet (BCIS) within the Irish Sea Basin. Our reconstruction indicates a non-linear relationship between the rapidly receding Irish Sea Ice Stream, the largest draining the BCIS, and the retreat of outlet glaciers draining the adjacent, terrestrially based ice sheet centred over Wales. Retreat of Welsh ice was episodic; superimposed over low-order oscillations of its margin are asynchronous outlet re-advances driven by catchment-wide mass balance variations that are amplified through migration of the ice cap's main ice-divide. Formation of large, linear ridges which extend at least 12.5 km offshore (locally known as sarns) and dominate the regional bathymetry are attributed to repeated frontal and medial morainic deposition associated with the re-advancing phases of these outlet glaciers. Our study provides new insight into ice-sheet extent, dynamics and non-linear retreat across a major palaeo-ice stream confluence zone, and has ramifications for the interpretation of recent fluctuations observed by satellites over short-time scales across marine-sectors of the Greenland and Antarctic ice sheets.


2013 ◽  
Vol 59 (215) ◽  
pp. 449-466 ◽  
Author(s):  
T.M. Kyrke-Smith ◽  
R.F. Katz ◽  
A.C. Fowler

AbstractOne challenge in improving our understanding of ice-stream dynamics is to develop models of the spatial and temporal transition from ice-sheet to ice-stream flow. We address this with a new, vertically integrated, higher-order formulation for ice-sheet dynamics that captures the leading-order physics of low aspect ratio, viscous fluid flow, regardless of the amount of slip at the bed. The theory introduces a parameter, λ, which approximates the ratio of the basal stress to the shear stress scale, providing a measure of the relative importance of sliding and internal deformation. Our model is able to simultaneously describe the dynamics of both a slow-moving sheet and rapidly flowing ice streams. To test the formulation, we apply a triple-valued sliding law as the basal boundary condition and obtain numerical solutions that can be compared with previous work. We investigate the sensitivity of flow regimes and shear margin width to parameter variation, deriving a scaling for the latter. We also consider a double-valued sliding law, which enforces a constant, low basal stress beneath the ice stream. Comparisons of the resultant stress fields illustrate the different stress balances that can maintain ice-stream flow.


2013 ◽  
Vol 1 (1) ◽  
pp. 53-65 ◽  
Author(s):  
H. Patton ◽  
A. Hubbard ◽  
T. Bradwell ◽  
N. F. Glasser ◽  
M. J. Hambrey ◽  
...  

Abstract. Understanding the retreat behaviour of past marine-based ice sheets provides vital context for accurate assessments of the present stability and long-term response of contemporary polar ice sheets to climate and oceanic warming. Here new multibeam swath bathymetry data and sedimentological analysis are combined with high resolution ice-sheet modelling to reveal complex landform assemblages and process dynamics associated with deglaciation of the Celtic ice sheet within the Irish Sea Basin. Our reconstruction indicates a non-linear relationship between the rapidly receding Irish Sea Ice Stream and the retreat of outlet glaciers draining the adjacent, terrestrially based ice cap centred over Wales. Retreat of Welsh ice was episodic; superimposed over low-order oscillations of its margin are asynchronous outlet readvances driven by catchment-wide mass balance variations that are amplified through migration of the ice cap's main ice divide. Formation of large, linear ridges which extend at least 12.5 km offshore (locally known as sarns) and which dominate the regional bathymetry are attributed to repeated frontal and medial morainic deposition associated with the readvancing phases of these outlet glaciers. Our study provides new insight into ice-sheet extent, dynamics and non-linear retreat across a major palaeo-ice stream confluence zone, and has ramifications for the interpretation of recent fluctuations observed by satellites over short timescales across marine sectors of the Greenland and Antarctic ice sheets.


1979 ◽  
Vol 24 (90) ◽  
pp. 493-495
Author(s):  
T. J. Hughes

AbstractSize, shape, and surface albedo of former ice sheets are needed in order to model atmospheric circulation for the CLIMAP 18000 years B.P. experiment. Both the size and shape of an ice sheet depend on the hardness of ice and its coupling to bedrock. Ice hardness is controlled by ice temperature and fabric, which are not adequately described by any ice flow law. Ice–bed coupling is controlled by bed roughness and basal melt water, which are not adequately described by any ice sliding law. With these inadequacies in mind, we assumed equilibrium ice-sheet conditions 18000 years ago and combined the standard steady-state flow and sliding laws of ice with the equation of mass balance to obtain separate basal shear-stress variations along ice-sheet flow lines for a frozen bed when the flow law dominates and for a melted bed when the sliding law dominates. Theoretical basal shear-stress variations were then derived for freezing and melting beds on the assumption that separate melted areas of the bed had water films of constant thickness which expanded and merged for a melting bed but contracted and separated for a freezing bed. Theoretical basal shear-stress variations were also derived for ice streams along marine ice-sheet margins and ice lobes along terrestrial ice-sheet margins on the assumption that the entire area of their bed was wet so that further melting increased the water-layer thickness, which would then be decreased by freezing. Melting was assumed to continue to the grounding line of an ice stream and the minimum-slope surface inflection line of an ice lobe, where freezing began and continued to the ice-lobe terminus. Ice–bed uncoupling is complete at an ice-stream grounding line and maximized at an ice-lobe minimum-slope inflection line, so ice velocity and consequent generation of frictional heat were assumed to reach maxima across these lines. Theoretical basal shear-stress variations were derived for the zone of converging flow at the heads of ice streams and ice lobes, and from domes to saddles along the ice divide for both frozen and melted beds.


2014 ◽  
Vol 10 (1) ◽  
pp. 563-624
Author(s):  
F. A. Ziemen ◽  
C. B. Rodehacke ◽  
U. Mikolajewicz

Abstract. We studied the climate of the last glacial maximum (LGM) in a set of coupled ice sheet–climate model experiments. They are based on the standard Paleoclimate Modelling Intercomparison Project Phase 2 (PMIP-2) experiments and extend the PMIP-2 (and PMIP-3) protocol by explicitly modeling the ice sheets. This adds a new layer of complexity and yields a set of ice sheets and climate that interact and are consistent with each other. We studied the behavior of the ice sheets and the climate system and compared our results to proxy data. The setup consists of the atmosphere-ocean-vegetation general circulation model ECHAM5/MPIOM/LPJ bidirectionally coupled with the Parallel Ice Sheet Model (PISM). We validated the setup by comparing the LGM experiment results with proxy data and by performing a pre-industrial control run. In both cases, the results agree reasonably well with reconstructions and observations. This shows that the model system adequately represents large, non-linear climate perturbations. Under LGM boundary conditions, the surface air temperature decreases by 3.5 K, and the precipitation north of 45° N by 0.12 m yr−1 (−18%) compared to the pre-industrial conditions. The North Atlantic Deep Water cell strengthens from 17.0 to 22.1 Sv (1 Sv = 106 m3 s−1) and the deep water formation shifts from the Labrador and GIN Seas to southeast of Iceland. Under LGM boundary conditions, different ice sheet configurations imply different locations of deep water formation. The major ice streams form in topographic troughs. In large parts, the modeled ice stream locations agree with sedimentary seafloor deposits. Most ice streams show recurring surges. The Hudson Strait Ice Stream surges with an ice volume equivalent to about 5 m sea level and a recurrence interval of about 7000 yr.


2007 ◽  
Vol 45 (3) ◽  
pp. 263-267 ◽  
Author(s):  
William H. Mathews

ABSTRACT This paper comments on preconceptions about what is meant by the terms "Cordilleran Ice Sheet" and "ice stream". Contemporary Antarctic ice streams are described. The Laurentian Channel and throughs crossing the continental ice shelf between Vancouver and Queens Charlotte Islands are suggested as candidates for the tracks of past ice streams.


1979 ◽  
Vol 24 (90) ◽  
pp. 493-495 ◽  
Author(s):  
T. J. Hughes

Abstract Size, shape, and surface albedo of former ice sheets are needed in order to model atmospheric circulation for the CLIMAP 18000 years B.P. experiment. Both the size and shape of an ice sheet depend on the hardness of ice and its coupling to bedrock. Ice hardness is controlled by ice temperature and fabric, which are not adequately described by any ice flow law. Ice–bed coupling is controlled by bed roughness and basal melt water, which are not adequately described by any ice sliding law. With these inadequacies in mind, we assumed equilibrium ice-sheet conditions 18000 years ago and combined the standard steady-state flow and sliding laws of ice with the equation of mass balance to obtain separate basal shear-stress variations along ice-sheet flow lines for a frozen bed when the flow law dominates and for a melted bed when the sliding law dominates. Theoretical basal shear-stress variations were then derived for freezing and melting beds on the assumption that separate melted areas of the bed had water films of constant thickness which expanded and merged for a melting bed but contracted and separated for a freezing bed. Theoretical basal shear-stress variations were also derived for ice streams along marine ice-sheet margins and ice lobes along terrestrial ice-sheet margins on the assumption that the entire area of their bed was wet so that further melting increased the water-layer thickness, which would then be decreased by freezing. Melting was assumed to continue to the grounding line of an ice stream and the minimum-slope surface inflection line of an ice lobe, where freezing began and continued to the ice-lobe terminus. Ice–bed uncoupling is complete at an ice-stream grounding line and maximized at an ice-lobe minimum-slope inflection line, so ice velocity and consequent generation of frictional heat were assumed to reach maxima across these lines. Theoretical basal shear-stress variations were derived for the zone of converging flow at the heads of ice streams and ice lobes, and from domes to saddles along the ice divide for both frozen and melted beds.


Sign in / Sign up

Export Citation Format

Share Document