scholarly journals Brief communication: Evaluation of multiple empirical, density-dependent snow conductivity relationships at East Antarctica

2021 ◽  
Author(s):  
Minghu Ding ◽  
Tong Zhang ◽  
Diyi Yang ◽  
Ian Allison ◽  
Tingfeng Dou ◽  
...  

Abstract. Nine density-dependent empirical thermal conductivity relationships for firn were compared against data from three Automatic Weather Stations at climatically-different East Antarctica sites (Dome A, Eagle and LGB69). The empirical relationships were validated using a vertical, one-dimensional thermal diffusion model and a phase-change based firn diffusivity estimation method. The best relationships for these East Antarctica sites were identified by comparing the modeled and observed firn temperature at the depth of 1 m and 3 m, and from the mean heat conductivities over two depth intervals (1–3 m and 3–10 m). Among the nine relationships, that proposed by Calonne et al. (2011) appears to have the best performance. This study provides useful reference for firn thermal conductivity parameterizations in land modeling or snow-air interaction studies on the Antarctica Ice Sheet.

2021 ◽  
Vol 15 (9) ◽  
pp. 4201-4206
Author(s):  
Minghu Ding ◽  
Tong Zhang ◽  
Diyi Yang ◽  
Ian Allison ◽  
Tingfeng Dou ◽  
...  

Abstract. Nine density-dependent empirical thermal conductivity relationships for firn were compared against data from three automatic weather stations at climatically different sites in East Antarctica (Dome A, Eagle, and LGB69). The empirical relationships were validated using a vertical, 1D thermal diffusion model and a phase-change-based firn diffusivity estimation method. The best relationships for the abovementioned sites were identified by comparing the modeled and observed firn temperature at a depth of 1 and 3 m, and from the mean heat conductivities over two depth intervals (1–3 and 3–10 m). Among the nine relationships, that proposed by Calonne et al. (2011) appeared to show the best performance. The density- and temperature-dependent relationship given in Calonne et al. (2019) does not show clear superiority over other density-dependent relationships. This study provides a useful reference for firn thermal conductivity parameterizations in land modeling or snow–air interaction studies on the Antarctica ice sheet.


2007 ◽  
Vol 44 (9) ◽  
pp. 1117-1127 ◽  
Author(s):  
Jean Côté ◽  
Jean-Marie Konrad

Thermal and frost action analyses in soils require the knowledge of the thermal conductivity of soil solid particles. This parameter was obtained using reverse modeling applied to thermal conductivity data of Quebec marine clays. Values ranged from 2.2 to 3.2 W/mK mostly due to variation of the quartz fraction. The mean thermal conductivity of forming minerals other than quartz was equal to 2.15 W/mK. A modified geometric mean model was thus proposed to estimate the thermal conductivity of clay solid particles based on the thermal conductivity of quartz and the mean thermal conductivity of the other minerals. Several data for soils in the literature were also analyzed to confirm the experimental results of this study and to further clarify the quartz fraction influence on the thermal conductivity of clay particles. Finally, analyses of basic geotechnical data from the literature helped establish empirical relationships for the estimation of the quartz fraction of a soil as a function of either the clay-size particle fraction or the liquid limit.


1966 ◽  
Vol 25 ◽  
pp. 46-48 ◽  
Author(s):  
M. Lecar

“Dynamical mixing”, i.e. relaxation of a stellar phase space distribution through interaction with the mean gravitational field, is numerically investigated for a one-dimensional self-gravitating stellar gas. Qualitative results are presented in the form of a motion picture of the flow of phase points (representing homogeneous slabs of stars) in two-dimensional phase space.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1982
Author(s):  
Paul Desmarchelier ◽  
Alice Carré ◽  
Konstantinos Termentzidis ◽  
Anne Tanguy

In this article, the effect on the vibrational and thermal properties of gradually interconnected nanoinclusions embedded in an amorphous silicon matrix is studied using molecular dynamics simulations. The nanoinclusion arrangement ranges from an aligned sphere array to an interconnected mesh of nanowires. Wave-packet simulations scanning different polarizations and frequencies reveal that the interconnection of the nanoinclusions at constant volume fraction induces a strong increase of the mean free path of high frequency phonons, but does not affect the energy diffusivity. The mean free path and energy diffusivity are then used to estimate the thermal conductivity, showing an enhancement of the effective thermal conductivity due to the existence of crystalline structural interconnections. This enhancement is dominated by the ballistic transport of phonons. Equilibrium molecular dynamics simulations confirm the tendency, although less markedly. This leads to the observation that coherent energy propagation with a moderate increase of the thermal conductivity is possible. These findings could be useful for energy harvesting applications, thermal management or for mechanical information processing.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1867
Author(s):  
Tasbiraha Athaya ◽  
Sunwoong Choi

Blood pressure (BP) monitoring has significant importance in the treatment of hypertension and different cardiovascular health diseases. As photoplethysmogram (PPG) signals can be recorded non-invasively, research has been highly conducted to measure BP using PPG recently. In this paper, we propose a U-net deep learning architecture that uses fingertip PPG signal as input to estimate arterial BP (ABP) waveform non-invasively. From this waveform, we have also measured systolic BP (SBP), diastolic BP (DBP), and mean arterial pressure (MAP). The proposed method was evaluated on a subset of 100 subjects from two publicly available databases: MIMIC and MIMIC-III. The predicted ABP waveforms correlated highly with the reference waveforms and we have obtained an average Pearson’s correlation coefficient of 0.993. The mean absolute error is 3.68 ± 4.42 mmHg for SBP, 1.97 ± 2.92 mmHg for DBP, and 2.17 ± 3.06 mmHg for MAP which satisfy the requirements of the Association for the Advancement of Medical Instrumentation (AAMI) standard and obtain grade A according to the British Hypertension Society (BHS) standard. The results show that the proposed method is an efficient process to estimate ABP waveform directly using fingertip PPG.


A series of experiments has been performed to study the steady flow of heat in liquid helium in tubes of diameter 0.05 to 1.0 cm at temperatures between 0.25 and 0.7 °K. The results are interpreted in terms of the flow of a gas of phonons, in which the mean free path λ varies with temperature, and may be either greater or less than the diameter of the tube d . When λ ≫ d the flow is limited by the scattering of the phonons at the walls, and the effect of the surface has been studied, but when λ ≪ d viscous flow is set up in which the measured thermal conductivity is increased above that for wall scattering. This behaviour is very similar to that observed in the flow of gases at low pressures, and by applying kinetic theory to the problem it can be shown that the mean free path of the phonons characterizing viscosity can be expressed by the empirical relation λ = 3.8 x 10 -3 T -4.3 cm. This result is inconsistent with the temperature dependence of λ as T -9 predicted theoretically by Landau & Khalatnikov (1949).


1988 ◽  
Vol 110 (1) ◽  
pp. 23-29 ◽  
Author(s):  
Da Yu Tzou

Stochastic temperature distribution in a solid medium with random heat conductivity is investigated by the method of perturbation. The intrinsic randomness of the thermal conductivity k(x) is considered to be a distribution function with random amplitude in the solid, and several typical stochastic processes are considered in the numerical examples. The formulation used in the present analysis describes a situation that the statistical orders of the random response of the system are the same as those of the intrinsic random excitations, which is characteristic for the problem with extrinsic randomness. The maximum standard deviation of the temperature distribution from the mean value in the solid medium reveals the amount of unexpected energy experienced by the solid continuum, which should be carefully inspected in the thermal-failure design of structures with intrinsic randomness.


1998 ◽  
Vol 43 (3) ◽  
pp. 271-276 ◽  
Author(s):  
S Lepri ◽  
R Livi ◽  
A Politi

Sign in / Sign up

Export Citation Format

Share Document