scholarly journals Refreezing on the Greenland ice sheet: a comparison of parameterizations

2012 ◽  
Vol 6 (4) ◽  
pp. 743-762 ◽  
Author(s):  
C. H. Reijmer ◽  
M. R. van den Broeke ◽  
X. Fettweis ◽  
J. Ettema ◽  
L. B. Stap

Abstract. Retention and refreezing of meltwater are acknowledged to be important processes for the mass budget of polar glaciers and ice sheets. Several parameterizations of these processes exist for use in energy and mass balance models. Due to a lack of direct observations, validation of these parameterizations is difficult. In this study we compare a set of 6 refreezing parameterizations against output of two Regional Climate Models (RCMs) coupled to an energy balance snow model, the Regional Atmospheric Climate Model (RACMO2) and the Modèle Atmosphérique Régional (MAR), applied to the Greenland ice sheet. In both RCMs, refreezing is explicitly calculated in a snow model that calculates vertical profiles of temperature, density and liquid water content. Between RACMO2 and MAR, the ice sheet-integrated amount of refreezing differs by only 4.9 mm w.e yr−1 (4.5 %), and the temporal and spatial variability are very similar. For consistency, the parameterizations are forced with output (surface temperature, precipitation and melt) of the RCMs. For the ice sheet-integrated amount of refreezing and its inter-annual variations, all parameterizations give similar results, especially after some tuning. However, the spatial distributions differ significantly and the spatial correspondence between the RCMs is better than with any of the parameterizations. Results are especially sensitive to the choice of the depth of the thermally active layer, which determines the cold content of the snow in most parameterizations. These results are independent of which RCM is used to force the parameterizations.

2011 ◽  
Vol 5 (5) ◽  
pp. 2723-2764 ◽  
Author(s):  
C. H. Reijmer ◽  
M. R. van den Broeke ◽  
J. Ettema ◽  
L. B. Stap

Abstract. Retention and refreezing of meltwater are acknowledged to be important processes for the mass budget of polar glaciers and ice sheets. Several parameterizations of these processes exist for use in energy and mass balance models. Due to a lack of direct observations, validation of these parameterizations is difficult. In this study we compare a set of 6 refreezing parameterizations against output of the Regional Atmospheric Climate Model (RACMO2), applied to the Greenland ice sheet. In RACMO2, refreezing is explicitly calculated in a snow model that calculates vertical profiles of temperature, density and liquid water content. For consistency, the parameterizations are forced with output (surface temperature, precipitation and melt) of RACMO2. For the ice sheet-integrated amount of refreezing and its inter-annual variations, all parameterizations give similar results, especially after some tuning. However, the spatial distributions differ significantly. Results are especially sensitive to the choice of the depth of the thermally active layer, which determines the cold content of the snow in most parameterizations.


2019 ◽  
Author(s):  
Alison Delhasse ◽  
Christoph Kittel ◽  
Charles Amory ◽  
Stefan Hofer ◽  
Xavier Fettweis

Abstract. The ERA5 reanalysis, recently made available by the European Centre for Medium-Range Weather Forecasts (ECMWF), is a new reanalysis product at a higher resolution which will replace ERA-Interim, considered to be the best reanalysis over Greenland until now. However, so far very little is known about the performance of ERA5 when compared to ERA-Interim over the Greenland Ice Sheet (GrIS). This study shows (1) that ERA5 improves not significantly the ERA-Interim comparison with near-surface climate observations over GrIS, (2) polar regional climate models (e.g. MAR) are still a useful tool to study the GrIS climate compared to ERA5, in particular in summer, and (3) that MAR results are not sensitive to the forcing used at its lateral boundaries (ERA5 or ERA-Interim).


2011 ◽  
Vol 5 (4) ◽  
pp. 2115-2157 ◽  
Author(s):  
M. M. Helsen ◽  
R. S. W. van de Wal ◽  
M. R. van den Broeke ◽  
W. J. van de Berg ◽  
J. Oerlemans

Abstract. It is notoriously difficult to couple surface mass balance (SMB) results from climate models to the changing geometry of an ice sheet model. This problem is traditionally avoided by using only accumulation fields from a climate model, and deriving SMB by parameterizing the run-off as a function of temperature, which is often related to surface elevation. In this study, a new parameterization of SMB is presented, designed for use in ice dynamical models to allow a direct adjustment of SMB as a result of a change in elevation (Hs) or a change in climate forcing. This method is based on spatial gradients in the present-day SMB field as computed by a regional climate model. Separate linear relations are derived for ablation and accumulation regimes, using only those pairs of Hs an SMB that are found within a minimum search radius. This approach enables a dynamic SMB forcing of ice sheet models, also for initially non-glaciated areas in the peripheral areas of an ice sheet, and circumvents traditional temperature lapse rate assumptions. The method is applied to the Greenland Ice Sheet (GrIS). Model experiments using both steady-state forcing and more realistic glacial-interglacial forcing result in ice sheet reconstructions and behavior that compare favorably with present-day observations of ice thickness.


2020 ◽  
Vol 61 (81) ◽  
pp. 225-233 ◽  
Author(s):  
Lynn Montgomery ◽  
Lora Koenig ◽  
Jan T. M. Lenaerts ◽  
Peter Kuipers Munneke

AbstractSince the year 2000, Greenland ice sheet mass loss has been dominated by a decrease in surface mass balance rather than an increase in solid ice discharge. Southeast Greenland is an important region to understand how high accumulation rates can offset increasing Greenland ice sheet meltwater runoff. To that end, we derive a new 9-year long dataset (2009–17) of accumulation rates in Southeast Greenland using NASA Operation IceBridge snow radar. Our accumulation dataset derived from internal layers focuses on high elevations (1500–3000 m) because at lower elevations meltwater percolation obscured internal layer structure. The uncertainty of the radar-derived accumulation rates is 11% [using Firn Densification Model (FDM) density profiles] and the average accumulation rate ranges from 0.5 to 1.2 m w.e. With our observations spanning almost a decade, we find large inter-annual variability, but no significant trend. Accumulation rates are compared with output from two regional climate models (RCMs), MAR and RACMO2. This comparison shows that the models are underestimating accumulation in Southeast Greenland and the models misrepresent spatial heterogeneity due to an orographically forced bias in snowfall near the coast. Our dataset is useful to fill in temporal and spatial data gaps, and to evaluate RCMs where few in situ measurements are available.


2012 ◽  
Vol 6 (2) ◽  
pp. 255-272 ◽  
Author(s):  
M. M. Helsen ◽  
R. S. W. van de Wal ◽  
M. R. van den Broeke ◽  
W. J. van de Berg ◽  
J. Oerlemans

Abstract. It is notoriously difficult to couple surface mass balance (SMB) results from climate models to the changing geometry of an ice sheet model. This problem is traditionally avoided by using only accumulation from a climate model, and parameterizing the meltwater run-off as a function of temperature, which is often related to surface elevation (Hs). In this study, we propose a new strategy to calculate SMB, to allow a direct adjustment of SMB to a change in ice sheet topography and/or a change in climate forcing. This method is based on elevational gradients in the SMB field as computed by a regional climate model. Separate linear relations are derived for ablation and accumulation, using pairs of Hs and SMB within a minimum search radius. The continuously adjusting SMB forcing is consistent with climate model forcing fields, also for initially non-glaciated areas in the peripheral areas of an ice sheet. When applied to an asynchronous coupled ice sheet – climate model setup, this method circumvents traditional temperature lapse rate assumptions. Here we apply it to the Greenland Ice Sheet (GrIS). Experiments using both steady-state forcing and glacial-interglacial forcing result in realistic ice sheet reconstructions.


2020 ◽  
Author(s):  
Christiaan van Dalum ◽  
Willem Jan van de Berg ◽  
Stef Lhermitte ◽  
Michiel van den Broeke

<p>Snow and ice albedo schemes in present day climate models often lack a sophisticated radiation penetration scheme and are limited to a broadband albedo. In this study, we evaluate a new snow albedo scheme in the regional climate model RACMO2 that uses the two-stream radiative transfer in snow model TARTES and the spectral-to-narrowband albedo module SNOWBAL for the Greenland ice sheet. Additionally, the bare ice albedo parameterization has been updated. The snow and ice albedo output of the updated version of RACMO2, referred to as RACMO2.3p3, is evaluated using PROMICE and K-transect in-situ data and MODIS remote-sensing observations. Generally, the RACMO2.3p3 albedo is in very good agreement with satellite observations, leading to a domain-averaged bias of only -0.012. Some discrepancies are, however, observed for regions close to the ice margin. Compared to the previous iteration RACMO2.3p2, the albedo of RACMO2.3p3 is considerably higher in the bare ice zone during the ablation season, as atmospheric conditions now alter the bare ice albedo. For most other regions, however, the albedo of RACMO2.3p3 is lower due to spectral effects, radiation penetration, snow metamorphism or a delayed firn-ice transition. Furthermore, a white-out effect during cloudy conditions is captured and the snow albedo shows a low sensitivity to low soot concentrations. The surface mass balance of RACMO2.3p3 compares well with observations. Subsurface heating, however, now leads to increased melt and refreezing in south Greenland, changing the snow structure.</p>


2012 ◽  
Vol 6 (6) ◽  
pp. 1275-1294 ◽  
Author(s):  
J. G. L. Rae ◽  
G. Aðalgeirsdóttir ◽  
T. L. Edwards ◽  
X. Fettweis ◽  
J. M. Gregory ◽  
...  

Abstract. Four high-resolution regional climate models (RCMs) have been set up for the area of Greenland, with the aim of providing future projections of Greenland ice sheet surface mass balance (SMB), and its contribution to sea level rise, with greater accuracy than is possible from coarser-resolution general circulation models (GCMs). This is the first time an intercomparison has been carried out of RCM results for Greenland climate and SMB. Output from RCM simulations for the recent past with the four RCMs is evaluated against available observations. The evaluation highlights the importance of using a detailed snow physics scheme, especially regarding the representations of albedo and meltwater refreezing. Simulations with three of the RCMs for the 21st century using SRES scenario A1B from two GCMs produce trends of between −5.5 and −1.1 Gt yr−2 in SMB (equivalent to +0.015 and +0.003 mm sea level equivalent yr−2), with trends of smaller magnitude for scenario E1, in which emissions are mitigated. Results from one of the RCMs whose present-day simulation is most realistic indicate that an annual mean near-surface air temperature increase over Greenland of ~ 2°C would be required for the mass loss to increase such that it exceeds accumulation, thereby causing the SMB to become negative, which has been suggested as a threshold beyond which the ice sheet would eventually be eliminated.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Thomas Slater ◽  
Andrew Shepherd ◽  
Malcolm McMillan ◽  
Amber Leeson ◽  
Lin Gilbert ◽  
...  

AbstractRunoff from the Greenland Ice Sheet has increased over recent decades affecting global sea level, regional ocean circulation, and coastal marine ecosystems, and it now accounts for most of the contemporary mass imbalance. Estimates of runoff are typically derived from regional climate models because satellite records have been limited to assessments of melting extent. Here, we use CryoSat-2 satellite altimetry to produce direct measurements of Greenland’s runoff variability, based on seasonal changes in the ice sheet’s surface elevation. Between 2011 and 2020, Greenland’s ablation zone thinned on average by 1.4 ± 0.4 m each summer and thickened by 0.9 ± 0.4 m each winter. By adjusting for the steady-state divergence of ice, we estimate that runoff was 357 ± 58 Gt/yr on average – in close agreement with regional climate model simulations (root mean square difference of 47 to 60 Gt/yr). As well as being 21 % higher between 2011 and 2020 than over the preceding three decades, runoff is now also 60 % more variable from year-to-year as a consequence of large-scale fluctuations in atmospheric circulation. Because this variability is not captured in global climate model simulations, our satellite record of runoff should help to refine them and improve confidence in their projections.


2019 ◽  
Author(s):  
Gabriel Lewis ◽  
Erich Osterberg ◽  
Robert Hawley ◽  
Hans Peter Marshall ◽  
Tate Meehan ◽  
...  

Abstract. The mass balance of the Greenland Ice Sheet (GrIS) in a warming climate is of critical interest to scientists and the general public in the context of future sea-level rise. Increased melting in the GrIS percolation zone due to atmospheric warming over the past several decades has led to increased mass loss at lower elevations. Previous studies have hypothesized that this warming is accompanied by a precipitation increase, as would be expected from the Clausius-Clapeyron relationship, negating some of the melt-induced mass loss throughout the Western GrIS. This study tests that hypothesis by calculating snow accumulation rates and trends across the Western GrIS percolation zone, providing new critical accumulation estimates in regions with sparse and/or dated in situ data for calibration of future regional climate models. We present accumulation records from sixteen 22–32 m long firn cores and 4436 km of ground penetrating-radar, covering the past 20–60 years of accumulation, collected across the Western GrIS percolation zone as part of the Greenland Traverse for Accumulation and Climate Studies (GreenTrACS) project. Trends from both radar and firn cores, as well as commonly used regional climate models, show decreasing accumulation and precipitation over the 1996–2016 period, which we attribute to shifting storm-tracks related to stronger atmospheric summer blocking over Greenland. Changes in atmospheric circulation over the past 20 years, specifically anomalously high summertime blocking, have reduced GrIS surface mass balance through both an increase in surface melting and a decrease in accumulation.


2020 ◽  
Author(s):  
Robin S. Smith ◽  
Steve George ◽  
Jonathan M. Gregory

Abstract. The physical interactions between ice sheets and their surroundings are major factors in determining the state of the climate system, yet many current Earth System models omit them entirely or approximate them in a heavily parameterised manner. In this work we have improved the snow and ice sheet surface physics in the FAMOUS climate model, with the aim of improving the representation of polar climate and implementing a bidirectional coupling to the Glimmer dynamic ice sheet model using the water and energy fluxes calculated by FAMOUS. FAMOUS and Glimmer are both low resolution, computationally affordable models used for multi-millennial simulations. Glaciated surfaces in the new FAMOUS-ice are modelled using a multi-layer snow scheme capable of simulating compaction of firn and the percolation and refreezing of surface melt. The low horizontal resolution of FAMOUS compared to Glimmer is mitigated by implementing this snow model on sub-gridscale tiles that represent different elevations on the ice sheet within each FAMOUS grid-box. We show that with this approach FAMOUS-ice can simulate relevant physical processes on the surface of the modern Greenland ice sheet well compared to higher resolution climate models, and that the ice sheet state in the coupled FAMOUS-ice-Glimmer system does not drift unacceptably. FAMOUS-ice coupled to Glimmer is thus a useful tool for modelling the physics and co-evolution of climate and grounded ice sheets on centennial and millennial timescales, with applications to scientific questions relevant to both paleoclimate and future sea level rise.


Sign in / Sign up

Export Citation Format

Share Document