scholarly journals Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2

2014 ◽  
Vol 8 (4) ◽  
pp. 1539-1559 ◽  
Author(s):  
V. Helm ◽  
A. Humbert ◽  
H. Miller

Abstract. This study focuses on the present-day surface elevation of the Greenland and Antarctic ice sheets. Based on 3 years of CryoSat-2 data acquisition we derived new elevation models (DEMs) as well as elevation change maps and volume change estimates for both ice sheets. Here we present the new DEMs and their corresponding error maps. The accuracy of the derived DEMs for Greenland and Antarctica is similar to those of previous DEMs obtained by satellite-based laser and radar altimeters. Comparisons with ICESat data show that 80% of the CryoSat-2 DEMs have an uncertainty of less than 3 m ± 15 m. The surface elevation change rates between January 2011 and January 2014 are presented for both ice sheets. We compared our results to elevation change rates obtained from ICESat data covering the time period from 2003 to 2009. The comparison reveals that in West Antarctica the volume loss has increased by a factor of 3. It also shows an anomalous thickening in Dronning Maud Land, East Antarctica which represents a known large-scale accumulation event. This anomaly partly compensates for the observed increased volume loss of the Antarctic Peninsula and West Antarctica. For Greenland we find a volume loss increased by a factor of 2.5 compared to the ICESat period with large negative elevation changes concentrated at the west and southeast coasts. The combined volume change of Greenland and Antarctica for the observation period is estimated to be −503 ± 107 km3 yr−1. Greenland contributes nearly 75% to the total volume change with −375 ± 24 km3 yr−1.

2014 ◽  
Vol 8 (2) ◽  
pp. 1673-1721 ◽  
Author(s):  
V. Helm ◽  
A. Humbert ◽  
H. Miller

Abstract. The ESA satellite CryoSat-2 has been observing Earth's polar regions since April 2010. It carries a sophisticated radar altimeter and aims for the detection of changes in sea ice thickness as well as surface elevation changes of Earth's land and marine ice sheets. This study focuses on the Greenland and Antarctic ice sheets, considering the contemporary elevation of their surfaces. Based on 2 years of CryoSat-2 data acquisition, elevation change maps and mass balance estimates are presented. Additionally, new digital elevation models (DEMs) and the corresponding error maps are derived. Due to the high orbit of CryoSat-2 (88° N/S) and the narrow across-track spacing, more than 99% of Antarctica's surface area is covered. In contrast, previous radar altimeter measurements of ERS1/2 and ENVISAT were limited to latitudes between 81.5° N and 81.5° S and to surface slopes below 1°. The derived DEMs for Greenland and Antarctica have an accuracy which is similar to previous DEMs obtained by satellite-based laser and radar altimetry (Liu et al., 2001; Bamber et al., 2009, 2013; Fretwell et al., 2013; Howat et al., 2014). Comparisons with ICESat data show that 80% of the CryoSat-2 DEMs have an error of less than 3 m ± 30 m. For both ice sheets the surface elevation change rates between 2011 and 2012 are presented at a resolution of 1 km. Negative elevation changes are concentrated at the west and south-east coast of Greenland and in the Amundsen Sea embayment in West Antarctica (e.g. Pine Island and Thwaites glaciers). They agree well with the dynamic mass loss observed by ICESat between 2003 and 2008 (Pritchard et al., 2009). Thickening occurs along the main trunk of Kamb Ice Stream and in Dronning Maud Land. While the former is a consequence of an ice stream stagnated ∼150 years ago (Rose, 1979; Retzlaff and Bentley, 1993), the latter represents a known large-scale accumulation event (Lenaerts et al., 2013). This anomaly partly compensates for the observed increased volume loss in West Antarctica. In Greenland the findings reveal an increased volume loss of a factor of 2 compared to the period 2003 to 2008. The combined volume loss of Greenland and Antarctica for the period 2011 and 2012 is estimated to be −448 ± 122 km3 yr−1.


2016 ◽  
Vol 62 (236) ◽  
pp. 1083-1092 ◽  
Author(s):  
SHUN TSUTAKI ◽  
SHIN SUGIYAMA ◽  
DAIKI SAKAKIBARA ◽  
TAKANOBU SAWAGAKI

ABSTRACTTo quantify recent thinning of marine-terminating outlet glaciers in northwestern Greenland, we carried out field and satellite observations near the terminus of Bowdoin Glacier. These data were used to compute the change in surface elevation from 2007 to 2013 and this rate of thinning was then compared with that of the adjacent land-terminating Tugto Glacier. Comparing DEMs of 2007 and 2010 shows that Bowdoin Glacier is thinning more rapidly (4.1 ± 0.3 m a−1) than Tugto Glacier (2.8 ± 0.3 m a−1). The observed negative surface mass-balance accounts for <40% of the elevation change of Bowdoin Glacier, meaning that the thinning of Bowdoin Glacier cannot be attributable to surface melting alone. The ice speed of Bowdoin Glacier increases down-glacier, reaching 457 m a−1 near the calving front. This flow regime causes longitudinal stretching and vertical compression at a rate of −0.04 a−1. It is likely that this dynamically-controlled thinning has been enhanced by the acceleration of the glacier since 2000. Our measurements indicate that ice dynamics indeed play a predominant role in the rapid thinning of Bowdoin Glacier.


2011 ◽  
Vol 57 (202) ◽  
pp. 315-324 ◽  
Author(s):  
Mélanie Raymond Pralong ◽  
G. Hilmar Gudmundsson

AbstractThe determination of basal properties on ice streams from surface data is formulated as a Bayesian statistical inference problem. The theory is applied to a flowline on Rutford Ice Stream, West Antarctica. Estimates of bed topography and basal slipperiness are updated using measurements of surface topography and the horizontal and vertical components of the surface velocity. The surface topography is allowed to vary within measurement errors. We calculate the transient evolution of the surface until rates of surface elevation change are within limits given by measurements. For our final estimation of basal properties, modelled rates of elevation change are in full agreement with estimates of surface elevation changes. Results are discarded from a section of the flowline where the distribution of surface residuals is not consistent with error estimates. Apart from a general increase in basal slipperiness toward the grounding line, we find no evidence for any spatial variations in basal slipperiness. In particular, we find that short-scale variability (<10 × ice thickness) in surface topography and surface velocities can be reproduced by the model by variations in basal topography only. Assuming steady-state conditions, an almost perfect agreement is found between modelled and measured surface geometry, suggesting that Rutford Ice Stream is currently close to a steady state.


2011 ◽  
Vol 52 (59) ◽  
pp. 1-7 ◽  
Author(s):  
Jun Li ◽  
H. Jay Zwally

AbstractChanges in ice-sheet surface elevation are caused by a combination of ice-dynamic imbalance, ablation, temporal variations in accumulation rate, firn compaction and underlying bedrock motion. Thus, deriving the rate of ice-sheet mass change from measured surface elevation change requires information on the rate of firn compaction and bedrock motion, which do not involve changes in mass, and requires an appropriate firn density to associate with elevation changes induced by recent accumulation rate variability. We use a 25 year record of surface temperature and a parameterization for accumulation change as a function of temperature to drive a firn compaction model. We apply this formulation to ICESat measurements of surface elevation change at three locations on the Greenland ice sheet in order to separate the accumulation-driven changes from the ice-dynamic/ablation-driven changes, and thus to derive the corresponding mass change. Our calculated densities for the accumulation-driven changes range from 410 to 610 kgm–3, which along with 900 kgm–3 for the dynamic/ablation-driven changes gives average densities ranging from 680 to 790 kgm–3. We show that using an average (or ‘effective’) density to convert elevation change to mass change is not valid where the accumulation and the dynamic elevation changes are of opposite sign.


1998 ◽  
Vol 44 (148) ◽  
pp. 570-582 ◽  
Author(s):  
G. Adalgeirsdóttir ◽  
K. A. Echelmeyer ◽  
W. D. Harrison

AbstractAirborne surface elevation profiles of the Harding Ice field, south-central Alaska, were made in 1991 and 1996. Thirteen glaciers were profiled, along with the tipper region of the icefield. The profiles were compared to U.S. Geological Survey topographie maps made in the 1950s, to obtain elevation and volume changes. Comparison of the changes for the different glaciers shows no significant correlation between volume change and the type of glacier or characteristics such as location, aspect, size, slope or terminus changes. Estimated total volume change tor this ~43 year period is about -34 km3, which corresponds to an area-average elevation change of-21 m. The estimated error in this elevation change of 5 m is mainly due to errors in the maps at higher elevations. Our measurements provide an accurate baseline against which future determinations of volume change can be made.


2008 ◽  
Vol 54 (186) ◽  
pp. 469-478 ◽  
Author(s):  
Jeffrey A. VanLooy ◽  
Richard R. Forster

AbstractThis study adjusts and compares digital elevation models (DEMs) created from photogrammetric and interferometric synthetic aperture radar techniques to determine volume and surface elevation changes of five icefields in a remote region of southwest British Columbia, Canada, between the mid-1980s and 1999. Preliminary differences between the DEMs in ice-free and vegetation-free areas indicated variable elevation offsets with increasing altitude (11 m km−1) and with increasing slope (2.7 m (10°)−1). Results indicate a surface elevation change of −6.0 ± 2.7 m (−0.5 ± 0.2 m a−1) and a total volume loss of −19.4 ± 8.8 km3 (−1.5 ± 0.7 km3 a−1), which represents a potential sea-level rise contribution of 0.004 ± 0.002 mm a−1. Temperature and snowfall data from four nearby meteorological stations indicate that increased temperatures and decreased snowfall throughout the late 1980s and 1990s are a likely cause of the thinning. Glacier terminus positions were compared between a historical map (1927) and satellite images (1974, 1990/91 and 2000/01). All observed glaciers were in retreat between 1927 and 1974, as well as between 1990/91 and 2000/01, but many glaciers advanced or significantly slowed in their retreat between 1974 and 1990/91.


2021 ◽  
Vol 11 (1) ◽  
pp. 32
Author(s):  
Norhafizi Mohamad ◽  
Anuar Ahmad ◽  
Mohd Faisal Abdul Khanan ◽  
Ami Hassan Md Din

Estimating surface elevation changes in mangrove forests requires a technique to filter the mangrove canopy and quantify the changes underneath. Hence, this study estimates surface elevation changes underneath the mangrove canopy through vegetation filtering and Difference of DEM (DoD) techniques using two epochs of unmanned aerial vehicle (UAV) data carried out during 2016 and 2017. A novel filtering algorithm named Surface estimation from Nearest Elevation and Repetitive Lowering (SNERL) is used to estimate the elevation height underneath the mangrove canopy. Consequently, DoD technique is used to quantify the elevation change rates at the ground surface, which comprise erosion, accretion, and sedimentation. The significant findings showed that region of interest (ROI) 5 experienced the highest volumetric accretion (surface raising) at 0.566 cm3. The most increased erosion (surface lowering) was identified at ROI 8 at −2.469 cm3. In contrast, for vertical change average rates, ROI 6 experienced the highest vertical accretion (surface raising) at 1.281 m. In comparison, the most increased vertical erosion (surface lowering) was spotted at ROI 3 at −0.568 m. The change detection map and the rates of surface elevation changes at Kilim River enabled authorities to understand the situation thoroughly and indicate the future situation, including its interaction with sea-level rise impacts.


1998 ◽  
Vol 44 (148) ◽  
pp. 570-582 ◽  
Author(s):  
G. Adalgeirsdóttir ◽  
K. A. Echelmeyer ◽  
W. D. Harrison

AbstractAirborne surface elevation profiles of the Harding Ice field, south-central Alaska, were made in 1991 and 1996. Thirteen glaciers were profiled, along with the tipper region of the icefield. The profiles were compared to U.S. Geological Survey topographie maps made in the 1950s, to obtain elevation and volume changes. Comparison of the changes for the different glaciers shows no significant correlation between volume change and the type of glacier or characteristics such as location, aspect, size, slope or terminus changes. Estimated total volume change tor this ~43 year period is about -34 km3, which corresponds to an area-average elevation change of-21 m. The estimated error in this elevation change of 5 m is mainly due to errors in the maps at higher elevations. Our measurements provide an accurate baseline against which future determinations of volume change can be made.


2015 ◽  
Vol 9 (6) ◽  
pp. 2009-2025 ◽  
Author(s):  
P. Kuipers Munneke ◽  
S. R. M. Ligtenberg ◽  
B. P. Y. Noël ◽  
I. M. Howat ◽  
J. E. Box ◽  
...  

Abstract. Observed changes in the surface elevation of the Greenland Ice Sheet are caused by ice dynamics, basal elevation change, basal melt, surface mass balance (SMB) variability, and by compaction of the overlying firn. The last two contributions are quantified here using a firn model that includes compaction, meltwater percolation, and refreezing. The model is forced with surface mass fluxes and temperature from a regional climate model for the period 1960–2014. The model results agree with observations of surface density, density profiles from 62 firn cores, and altimetric observations from regions where ice-dynamical surface height changes are likely small. In areas with strong surface melt, the firn model overestimates density. We find that the firn layer in the high interior is generally thickening slowly (1–5 cm yr−1). In the percolation and ablation areas, firn and SMB processes account for a surface elevation lowering of up to 20–50 cm yr−1. Most of this firn-induced marginal thinning is caused by an increase in melt since the mid-1990s and partly compensated by an increase in the accumulation of fresh snow around most of the ice sheet. The total firn and ice volume change between 1980 and 2014 is estimated at −3295 ± 1030 km3 due to firn and SMB changes, corresponding to an ice-sheet average thinning of 1.96 ± 0.61 m. Most of this volume decrease occurred after 1995. The computed changes in surface elevation can be used to partition altimetrically observed volume change into surface mass balance and ice-dynamically related mass changes.


2013 ◽  
Vol 59 (216) ◽  
pp. 671-686 ◽  
Author(s):  
Christina Tennant ◽  
Brian Menounos

AbstractWe determined length, area, elevation and volume change of the Columbia Icefield using Interprovincial Boundary Commission Survey maps from 1919, eight sets of aerial photographs from 1948 to 1993, and satellite data from 1999 to 2009. Over the period 1919–2009, glaciers on average retreated 1150 ± 34 m and shrank by 2.4 ± 0.2 km2. Total area loss was 59.6 ± 1.2 km2 (23 ± 5%), and mean elevation change was −49 ± 25 m w.e., resulting in a total volume loss of 14.3 ± 2.0 km3 w.e. Large outlet glaciers experienced the greatest absolute ice loss, while small, detached glaciers lost the most relative length and area. Thinning rates of debris-covered ice were 30–60% lower than those for clean ice. All glacier changes were significantly correlated with each other (p < 0.01), with r values ranging from 0.54 to 0.82. Temperature is correlated with length and area change over periods lagged 1–5 years (p < 0.05), and with elevation and volume change over periods lagged 9–18 years (p < 0.05). Precipitation is correlated with glacier change over periods lagged 1–10 years (p < 0.05).


Sign in / Sign up

Export Citation Format

Share Document