scholarly journals Recent extreme light sea ice years in the Canadian Arctic Archipelago: 2011 and 2012 eclipse 1998 and 2007

2013 ◽  
Vol 7 (2) ◽  
pp. 1313-1358 ◽  
Author(s):  
S. E. L. Howell ◽  
T. Wohlleben ◽  
A. Komarov ◽  
L. Pizzolato ◽  
C. Derksen

Abstract. Record low mean September sea ice area in the Canadian Arctic Archipelago (CAA) was observed in 2011 (146 × 103 km2), a level that was nearly exceeded in 2012 (150 × 103 km2). These values eclipsed previous September records set in 1998 (200 × 103 km2) and 2007 (220 × 103 km2) and are ∼60% lower than the 1981–2010 mean September climatology. In this study, the driving processes contributing to the extreme light years of 2011 and 2012 were investigated, compared to previous extreme minima of 1998 and 2007, and contrasted against historic summer seasons with above average September ice area. The 2011 minimum was driven by positive July surface air temperature (SAT) anomalies that facilitated rapid melt, coupled with atmospheric circulation in July and August that restricted multi-year ice (MYI) inflow from the Arctic Ocean into the CAA. The 2012 minimum was also driven by positive July SAT anomalies (with coincident rapid melt) but further ice decline was temporarily mitigated by atmospheric circulation in August and September which drove Arctic Ocean MYI inflow into the CAA. Atmospheric circulation was comparable between 2011 and 1998 (impeding Arctic Ocean MYI inflow) and 2012 and 2007 (inducing Arctic Ocean MYI inflow). However, evidence of both preconditioned thinner Arctic Ocean MYI flowing into CAA and maximum landfast first-year ice (FYI) thickness within the CAA was more apparent leading up to 2011 and 2012 than 1998 and 2007. The rapid melt process in 2011 and 2012 was more intense than observed in 1998 and 2007 because of the thinner ice cover being more susceptible to positive SAT forcing. The thinner sea ice cover within the CAA in recent years has also helped counteract the processes that facilitate extreme heavy ice years. The recent extreme light years within the CAA are associated with a longer navigation season within the Northwest Passage.

2013 ◽  
Vol 7 (6) ◽  
pp. 1753-1768 ◽  
Author(s):  
S. E. L. Howell ◽  
T. Wohlleben ◽  
A. Komarov ◽  
L. Pizzolato ◽  
C. Derksen

Abstract. Remarkably low mean September sea ice area in the Canadian Arctic Archipelago (CAA) was observed in 2011 (146 × 103 km2), a record-breaking level that was nearly exceeded in 2012 (150 × 103 km2). These values were lower than previous September records set in 1998 (200 × 103 km2) and 2007 (220 × 103 km2), and are ∼60% lower than the 1981–2010 mean September climatology. In this study, the processes contributing to the extreme light years of 2011 and 2012 were investigated, compared to previous extreme minima of 1998 and 2007, and contrasted against historic summer seasons with above average September ice area. The 2011 minimum was associated with positive June through September (JJAS) surface air temperature (SAT) and net solar radiation (K*) anomalies that facilitated rapid melt, coupled with atmospheric circulation that restricted multi-year ice (MYI) inflow from the Arctic Ocean into the CAA. The 2012 minimum was also associated with positive JJAS SAT and K* anomalies with coincident rapid melt, but further ice decline was temporarily mitigated by atmospheric circulation which drove Arctic Ocean MYI inflow into the CAA. Atmospheric circulation was comparable between 2011 and 1998 (impeding Arctic Ocean MYI inflow) and 2012 and 2007 (inducing Arctic Ocean MYI inflow). However, preconditioning was more apparent leading up to 2011 and 2012 than 1998 and 2007. The rapid melt process in 2011 and 2012 was more intense than observed in 1998 and 2007 because of the thinner ice cover being more susceptible to anomalous thermodynamic forcing. The thinner sea ice cover within the CAA in recent years has also helped counteract the processes that facilitate extreme heavy ice years. The recent extreme light years within the CAA are associated with a longer navigation season within the Northwest Passage.


2013 ◽  
Vol 118 (7) ◽  
pp. 3595-3607 ◽  
Author(s):  
Stephen E. L. Howell ◽  
Trudy Wohlleben ◽  
Mohammed Dabboor ◽  
Chris Derksen ◽  
Alexander Komarov ◽  
...  

2006 ◽  
Vol 44 ◽  
pp. 329-338 ◽  
Author(s):  
Bea Alt ◽  
Katherine Wilson ◽  
Tom Carrières

AbstractThis case Study attempts to quantify the amount and timing of the import, export and through-flow of old ice in the Peary Channel–sverdrup Channel area of the northern Canadian Arctic Archipelago during the period 1998–2005. The Study combines quantitative weekly area-averaged ice coverage evaluations from the Canadian Ice Service (CIS) Digital Archive with detailed analysis of Radarsat imagery and ice-motion results from the CIS ice-motion algorithm. The results Show that in 1998 more than 70% of the old ice in Peary–sverdrup was lost, half by melt and export to the South and the other half by export north into the Arctic Ocean, and that no Arctic Ocean old ice was imported into Peary–sverdrup. A net import of 10% old ice was Seen in 1999, with Some indication of through-flow into Southern channels. In 2000, no net import of old ice occurred in Peary–sverdrup, but there was Significant through-flow, with evidence of old ice reaching the Northwest Passage by November. Full recovery of the old-ice regime was complete by the end of 2001. More than two-thirds of the recovery was due to the in Situ formation of Second-year ice. Conditions in the following 3 years were near normal.


2017 ◽  
Author(s):  
Margaux Gourdal ◽  
Martine Lizotte ◽  
Guillaume Massé ◽  
Michel Gosselin ◽  
Michael Scarratt ◽  
...  

Abstract. Melt pond formation is a natural seasonal pan-Arctic process. During the thawing season, melt ponds may cover up to 90 % of the Arctic first year sea ice (FYI) and 15 to 25 % of the multi-year sea ice (MYI). These pools of water lying at the surface of the sea-ice cover are habitats for microorganisms and represent a potential source of the biogenic gas dimethylsulfide (DMS) for the atmosphere. Here we report on the concentrations and dynamics of DMS in nine melt ponds sampled in July 2014 in the Eastern Canadian Arctic. DMS concentrations were under the detection limit (


2013 ◽  
Vol 10 (2) ◽  
pp. 2937-2965 ◽  
Author(s):  
E. E. Popova ◽  
A. Yool ◽  
A. C. Coward ◽  
T. R. Anderson

Abstract. The Arctic Ocean is a region that is particularly vulnerable to the impact of ocean acidification driven by rising atmospheric CO2, negatively impacting calcifying organisms such as coccolithophorids and foraminiferans. In this study, we use an ocean general circulation model, with embedded biogeochemistry and a full description of the carbon cycle, to study the response of pH and saturation states of calcite and aragonite to changing climate in the Arctic Ocean. Particular attention is paid to the strong regional variability within the Arctic and, for comparison, simulation results are contrasted with those for the global ocean. Simulations were run to year 2099 using the RCP 8.5 (the highest IPCC AR5 CO2 emission scenario). The separate impacts of the direct increase in atmospheric CO2 and indirect effects via climate feedbacks (changing temperature, stratification, primary production and fresh water fluxes) were examined by undertaking two simulations, one with the full system and the other in which ocean-atmosphera exchange of CO2 was prevented from increasing beyond the flux calculated for year 2000. Results indicate that climate feedbacks, and spatial heterogeneity thereof, play a strong role in the declines in pH and carbonate saturation (Ω) seen in the Arctic. The central Arctic, Canadian Arctic Archipelago and Baffin Bay show greatest rates of acidification and Ω decline as a result of melting sea ice. In contrast, areas affected by Atlantic inflow including the Greenland Sea and outer shelves of the Barents, Kara and Laptev seas, had minimal decreases in pH and Ω because weakening stratification associated with diminishing ice cover led to greater mixing and primary production. As a consequence, the predicted onset of undersaturation is highly variable regionally within the Arctic, occurring during the decade of 2000–2010 in the Siberian shelves and Canadian Arctic Archipelago, but as late as the 2080s in the Barents and Norwegian Seas. We conclude that, in order to make future projections of acidification and carbon saturation state in the Arctic, regional variability needs to be adequately resolved, with particular emphasis on reliable predictions of the rates of retreat of the sea-ice which are a major source of uncertainty.


2020 ◽  
Author(s):  
Stephen Howell ◽  
Mike Brady

<p>The ice arches that ring the northern Canadian Arctic Archipelago have historically blocked the inflow of Arctic Ocean sea ice for the majority of the year. However, annual average air temperature in northern Canada has increased by more than 2°C over the past 65+ years and a warmer climate is expected to contribute to the deterioration of these ice arches, which in turn has implications for the overall loss of Arctic Ocean sea ice. We investigated the effect of warming on the Arctic Ocean ice area flux into the Canadian Arctic Archipelago using a 22-year record (1997-2018) of ice exchange derived from RADARSAT-1 and RADARSAT-2 imagery. Results indicated that there has been a significant increase in the amount of Arctic Ocean sea ice (10<sup>3</sup> km<sup>2</sup>/year) entering the northern Canadian Arctic Archipelago over the period of 1997-2018. The increased Arctic Ocean ice area flux was associated with reduced ice arch duration but also with faster (thinner) moving ice and more southern latitude open water leeway as a result of the Canadian Arctic Archipelago’s long-term transition to a younger and thinner ice regime. Remarkably, in 2016, the Arctic Ocean ice area flux into the Canadian Arctic Archipelago (161x10<sup>3</sup> km<sup>2</sup>) was 7 times greater than the 1997-2018 average (23x10<sup>3</sup> km<sup>2</sup>) and almost double the 2007 ice area flux into Nares Strait (87x10<sup>3</sup> km<sup>2</sup>). Indeed, Nares Strait is known to be an important pathway for Arctic Ocean ice loss however, the results of this study suggest that with continued warming, the Canadian Arctic Archipelago may also become a large contributor to Arctic Ocean ice loss.</p>


2018 ◽  
Vol 15 (10) ◽  
pp. 3169-3188 ◽  
Author(s):  
Margaux Gourdal ◽  
Martine Lizotte ◽  
Guillaume Massé ◽  
Michel Gosselin ◽  
Michel Poulin ◽  
...  

Abstract. Melt pond formation is a seasonal pan-Arctic process. During the thawing season, melt ponds may cover up to 90 % of the Arctic first-year sea ice (FYI) and 15 to 25 % of the multi-year sea ice (MYI). These pools of water lying at the surface of the sea ice cover are habitats for microorganisms and represent a potential source of the biogenic gas dimethyl sulfide (DMS) for the atmosphere. Here we report on the concentrations and dynamics of DMS in nine melt ponds sampled in July 2014 in the Canadian Arctic Archipelago. DMS concentrations were under the detection limit (< 0.01 nmol L−1) in freshwater melt ponds and increased linearly with salinity (rs = 0.84, p ≤ 0.05) from ∼ 3 up to ∼ 6 nmol L−1 (avg. 3.7 ± 1.6 nmol L−1) in brackish melt ponds. This relationship suggests that the intrusion of seawater in melt ponds is a key physical mechanism responsible for the presence of DMS. Experiments were conducted with water from three melt ponds incubated for 24 h with and without the addition of two stable isotope-labelled precursors of DMS (dimethylsulfoniopropionate), (D6-DMSP) and dimethylsulfoxide (13C-DMSO). Results show that de novo biological production of DMS can take place within brackish melt ponds through bacterial DMSP uptake and cleavage. Our data suggest that FYI melt ponds could represent a reservoir of DMS available for potential flux to the atmosphere. The importance of this ice-related source of DMS for the Arctic atmosphere is expected to increase as a response to the thinning of sea ice and the areal and temporal expansion of melt ponds on Arctic FYI.


2012 ◽  
Vol 69 (7) ◽  
pp. 1180-1193 ◽  
Author(s):  
Zachary W. Brown ◽  
Kevin R. Arrigo

Abstract Brown, Z. W., and Arrigo, K. R. 2012. Contrasting trends in sea ice and primary production in the Bering Sea and Arctic Ocean. – ICES Journal of Marine Science, 69: . Satellite remote sensing data were used to examine recent trends in sea-ice cover and net primary productivity (NPP) in the Bering Sea and Arctic Ocean. In nearly all regions, diminished sea-ice cover significantly enhanced annual NPP, indicating that light-limitation predominates across the seasonally ice-covered waters of the northern hemisphere. However, long-term trends have not been uniform spatially. The seasonal ice pack of the Bering Sea has remained consistent over time, partially because of winter winds that have continued to carry frigid Arctic air southwards over the past six decades. Hence, apart from the “Arctic-like” Chirikov Basin (where sea-ice loss has driven a 30% increase in NPP), no secular trends are evident in Bering Sea NPP, which averaged 288 ± 26 Tg C year−1 over the satellite ocean colour record (1998–2009). Conversely, sea-ice cover in the Arctic Ocean has plummeted, extending the open-water growing season by 45 d in just 12 years, and promoting a 20% increase in NPP (range 441–585 Tg C year−1). Future sea-ice loss will likely stimulate additional NPP over the productive Bering Sea shelves, potentially reducing nutrient flux to the downstream western Arctic Ocean.


2021 ◽  
Author(s):  
David Gareth Babb ◽  
Ryan J. Galley ◽  
Stephen E. L. Howell ◽  
Jack Christopher Landy ◽  
Julienne Christine Stroeve ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document