scholarly journals Impact of land-use change in mountain semi-dry meadows on plants, litter decomposition and earthworms

Web Ecology ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 53-63 ◽  
Author(s):  
Ines Jernej ◽  
Andreas Bohner ◽  
Ronnie Walcher ◽  
Raja Imran Hussain ◽  
Arne Arnberger ◽  
...  

Abstract. Traditionally managed mountain grasslands are biodiversity hotspots in central Europe. However, socio-economic trends in agriculture during the last decades have changed farming practices, leaving steep and remote sites abandoned. Especially the abandonment of meadows is well known to directly affect plant and insect diversity. However, not much is known about the effects on soil processes and soil biota. To assess this, we studied four extensively managed (mown once a year, no fertilization) and four abandoned (no mowing, no fertilization) semi-dry meadows in a mountain region in Austria. Plant species richness, plant cover, plant traits, plant biomass, litter decomposition (tea bag index), and earthworm species richness and density were assessed. Additionally, soil temperature, moisture and electrical conductivity were measured. Results showed that managed meadows contained more plant species than abandoned meadows (118 vs. 93 species, respectively). We also observed different plant species assemblages between the two management types. In managed meadows, hemirosette and ruderal plant species were more abundant, while more plant species without rosettes and a higher plant necromass were found in abandoned meadows. Additionally, decomposition rate was higher in abandoned meadows. There was a trend towards higher earthworm densities in managed meadows, but there was no difference in earthworm species richness. We conclude that meadow management has effects on both aboveground vegetation and belowground biota and processes. Both abandoned and extensively managed meadows were important to sustain overall biodiversity and ecosystem functioning in the study region.

Oecologia ◽  
2021 ◽  
Vol 195 (1) ◽  
pp. 213-223
Author(s):  
Mark A. Lee ◽  
Grace Burger ◽  
Emma R. Green ◽  
Pepijn W. Kooij

AbstractPlant and animal community composition changes at higher elevations on mountains. Plant and animal species richness generally declines with elevation, but the shape of the relationship differs between taxa. There are several proposed mechanisms, including the productivity hypotheses; that declines in available plant biomass confers fewer resources to consumers, thus supporting fewer species. We investigated resource availability as we ascended three aspects of Helvellyn mountain, UK, measuring several plant nutritive metrics, plant species richness and biomass. We observed a linear decline in plant species richness as we ascended the mountain but there was a unimodal relationship between plant biomass and elevation. Generally, the highest biomass values at mid-elevations were associated with the lowest nutritive values, except mineral contents which declined with elevation. Intra-specific and inter-specific increases in nutritive values nearer the top and bottom of the mountain indicated that physiological, phenological and compositional mechanisms may have played a role. The shape of the relationship between resource availability and elevation was different depending on the metric. Many consumers actively select or avoid plants based on their nutritive values and the abundances of consumer taxa vary in their relationships with elevation. Consideration of multiple nutritive metrics and of the nutritional requirements of the consumer may provide a greater understanding of changes to plant and animal communities at higher elevations. We propose a novel hypothesis for explaining elevational diversity gradients, which warrants further study; the ‘nutritional complexity hypothesis’, where consumer species coexist due to greater variation in the nutritional chemistry of plants.


Author(s):  
Santonu Goswami ◽  
John Gamon ◽  
Sergio Vargas ◽  
Craig Tweedie

Here we investigate relationships between NDVI, Biomass, and Leaf Area Index (LAI) for six key plant species near Barrow, Alaska. We explore how key plant species differ in biomass, leaf area index (LAI) and how can vegetation spectral indices be used to estimate biomass and LAI for key plant species. A vegetation index (VI) or a spectral vegetation index (SVI) is a quantitative predictor of plant biomass or vegetative vigor, usually formed from combinations of several spectral bands, whose values are added, divided, or multiplied in order to yield a single value that indicates the amount or vigor of vegetation. For six key plant species, NDVI was strongly correlated with biomass (R2 = 0.83) and LAI (R2 = 0.70) but showed evidence of saturation above a biomass of 100 g/m2 and an LAI of 2 m2/m2. Extrapolation of a biomass-plant cover model to a multi-decadal time series of plant cover observations suggested that Carex aquatilis and Eriophorum angustifolium decreased in biomass while Arctophila fulva and Dupontia fisheri increased 1972-2008.


2010 ◽  
Vol 19 (4) ◽  
pp. 490 ◽  
Author(s):  
Erich K. Dodson ◽  
David W. Peterson ◽  
Richy J. Harrod

Slope stabilisation treatments like mulching and seeding are used to increase soil cover and reduce runoff and erosion following severe wildfires, but may also retard native vegetation recovery. We evaluated the effects of seeding and fertilisation on the cover and richness of native and exotic plants and on individual plant species following the 2004 Pot Peak wildfire in Washington State, USA. We applied four seeding and three fertilisation treatments to experimental plots at eight burned sites in spring 2005 and surveyed vegetation during the first two growing seasons after fire. Seeding significantly reduced native non-seeded species richness and cover by the second year. Fertilisation increased native plant cover in both years, but did not affect plant species richness. Seeding and fertilisation significantly increased exotic cover, especially when applied in combination. However, exotic cover and richness were low and treatment effects were greatest in the first year. Seeding suppressed several native plant species, especially disturbance-adapted forbs. Fertilisation, in contrast, favoured several native understorey plant species but reduced tree regeneration. Seeding, even with native species, appears to interfere with the natural recovery of native vegetation whereas fertilisation increases total plant cover, primarily by facilitating native vegetation recovery.


2014 ◽  
Vol 11 (19) ◽  
pp. 5521-5537 ◽  
Author(s):  
B. Magnússon ◽  
S. H. Magnússon ◽  
E. Ólafsson ◽  
B. D. Sigurdsson

Abstract. Plant colonization and succession on the volcanic island of Surtsey, formed in 1963, have been closely followed. In 2013, a total of 69 vascular plant species had been discovered on the island; of these, 59 were present and 39 had established viable populations. Surtsey had more than twice the species of any of the comparable neighbouring islands, and all of their common species had established on Surtsey. The first colonizers were dispersed by sea, but, after 1985, bird dispersal became the principal pathway with the formation of a seagull colony on the island and consequent site amelioration. This allowed wind-dispersed species to establish after 1990. Since 2007, there has been a net loss of species on the island. A study of plant succession, soil formation and invertebrate communities in permanent plots on Surtsey and on two older neighbouring islands (plants and soil) has revealed that seabirds, through their transfer of nutrients from sea to land, are major drivers of development of these ecosystems. In the area impacted by seagulls, dense grassland swards have developed and plant cover, species richness, diversity, plant biomass and soil carbon become significantly higher than in low-impact areas, which remained relatively barren. A similar difference was found for the invertebrate fauna. After 2000, the vegetation of the oldest part of the seagull colony became increasingly dominated by long-lived, rhizomatous grasses (Festuca, Poa, Leymus) with a decline in species richness and diversity. Old grasslands of the neighbouring islands Elliđaey (puffin colony, high nutrient input) and Heimaey (no seabirds, low nutrient input) contrasted sharply. The puffin grassland of Elliđaey was very dense and species-poor. It was dominated by Festuca and Poa, and very similar to the seagull grassland developing on Surtsey. The Heimaey grassland was significantly higher in species richness and diversity, and had a more even cover of dominants (Festuca/Agrostis/Ranunculus). We forecast that, with continued erosion of Surtsey, loss of habitats and increasing impact from seabirds a lush, species-poor grassland will develop and persist, as on the old neighbouring islands.


2013 ◽  
Vol 41 (7) ◽  
pp. 657-664 ◽  
Author(s):  
Hai Wang ◽  
Zheng-Xin Chen ◽  
Xiao-Yu Zhang ◽  
Si-Xi Zhu ◽  
Ying Ge ◽  
...  

2019 ◽  
pp. 1-12 ◽  
Author(s):  
Erica Juel Ahrenfeldt ◽  
Johannes Kollmann ◽  
Henning Bang Madsen ◽  
Hans Skov-Petersen ◽  
Lene Sigsgaard

In Western Europe agricultural management was intensified in the period 1950–2010 with negative consequences for ecosystem services, such as pollination, especially in countries with a large proportion of agriculture. Farmland represents 66% of the Danish landscape, but little is known about wild bees despite that 75% of the country’s wild and cultivated plant species depend on insect pollination. Strawberry (Fragaria × ananassa) gains considerable benefits from insect pollination and abundance, species richness and functional diversity, are all important elements. We surveyed the diversity of wild bees during strawberry flowering by sampling bees with pan-traps along permanent margins bordering strawberry fields on six organic and six conventional farms in eastern Denmark and compared the results of the survey with that of sampling site farming practice and field margin forage availability. The majority of bees sampled were polylectic solitary ground-nesting bees known to forage on species of the rose family. This indicates that these bee species are potential pollinators of strawberries, and the low number of specialized bees suggests that the bee community was affected by the simplified landscapes. Temporal trends in abundance, species richness, and body size of the bees, suggest that the functional diversity of pollinator assemblages available differed for early- and late-flowering strawberries. Fewer plants species and a lower plant cover were found in the margins of sprayed fields. Abundance and diversity of the wild bees were neither correlated with the use of herbicides and insecticides, nor with plant species richness or flowering plant cover.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2507
Author(s):  
Vilma Gudyniene ◽  
Sigitas Juzenas ◽  
Vaclovas Stukonis ◽  
Egle Norkeviciene

Hydroseeding is a convenient, low-cost way to plant seeds. Traditionally, fast-growing commercial species that are cheap to obtain are preferred in hydroseeding, while native species have limited use. Nowadays, the use of native species is often desired in revegetation projects. However, there is a paucity of information about hydroseeding native species in Northern areas of Europe. Therefore, we aimed to determine whether hydroseeding has any effects on native plant cover formation, species richness and abundance, the development of plant morphological features, or aboveground biomass. A total of 40 native plant species in Lithuania were sowed using hydroseeding and regular seeding. The experimental plots were assessed for two years. The results show a relatively small and short positive effect of hydroseeding on plant cover formation. No significant differences were found in species richness between the sowing treatments. However, a comparison of species composition revealed significant differences between the sowing treatments that were more associated with species abundance than species diversity. Hydroseeding was favoured by legume species, such as Onobrychis viciifolia, Ononis arvensis, Lotus corniculatus, and Trifolium medium, while Festuca rubra favoured the regular seeding treatment. Overall, our findings emphasize that legume species that display more competitive growth traits should be included in the seed mixture in lower proportions when hydroseeding is applied.


Sign in / Sign up

Export Citation Format

Share Document