scholarly journals Parametric slat design study for thick base airfoils at high Reynolds numbers

2019 ◽  
Author(s):  
Julia Steiner ◽  
Axelle Viré ◽  
Francesco Benetti ◽  
Nando Timmer ◽  
Richard Dwight

Abstract. Standard passive aerodynamic flow control devices such as vortex generators and gurney flaps have a working principle that is well understood. They increase the stall angle and the lift below stall and are mainly applied at the inboard part of wind turbine blades. However, the potential of applying a rigidly fixed leading edge slat element at inboard blade stations is less well understood but has received some attention in the past decade. This solution may offer advantages not only under steady conditions but also under unsteady inflow conditions such as yaw. This article aims at further clarifying what an optimal two-element configuration with a thick main element would look like, and what kind of performance characteristics can be expected from a purely aerodynamic point of view. To accomplish this an aerodynamic shape optimization procedure is used to derive optimal profile designs for different optimization boundary conditions including the optimization of both the slat and the main element. The performance of the optimized designs shows several positive characteristics as compared to single element airfoils, such as a high stall angle, high lift below stall, low roughness sensitivity and higher aerodynamic efficiency. Furthermore, the results highlight the benefits of an integral design procedure, where both slat and main element are optimized, over an auxiliary one. Nevertheless, the designs also have two caveats, namely a steep drop in lift post-stall and high positive pitching moments.

2020 ◽  
Vol 5 (3) ◽  
pp. 1075-1095
Author(s):  
Julia Steiner ◽  
Axelle Viré ◽  
Francesco Benetti ◽  
Nando Timmer ◽  
Richard Dwight

Abstract. Standard passive aerodynamic flow control devices such as vortex generators and gurney flaps have a working principle that is well understood. They increase the stall angle and the lift below stall and are mainly applied at the inboard part of wind turbine blades. However, the potential of applying a rigidly fixed leading-edge slat element at inboard blade stations is less well understood but has received some attention in the past decade. This solution may offer advantages not only under steady conditions but also under unsteady inflow conditions such as yaw. This article aims at further clarifying what an optimal two-element configuration with a thick main element would look like and what kind of performance characteristics can be expected from a purely aerodynamic point of view. To accomplish this an aerodynamic shape optimization procedure is used to derive optimal profile designs for different optimization boundary conditions including the optimization of both the slat and the main element. The performance of the optimized designs shows several positive characteristics compared to single-element airfoils, such as a high stall angle, high lift below stall, low roughness sensitivity, and higher aerodynamic efficiency. Furthermore, the results highlight the benefits of an integral design procedure, where both slat and main element are optimized, over an auxiliary one. Nevertheless, the designs also have two caveats, namely a steep drop in lift post-stall and high positive pitching moments.


Author(s):  
Hanns Mueller-Vahl ◽  
Georgios Pechlivanoglou ◽  
C. N. Nayeri ◽  
C. O. Paschereit

Vortex generators (VGs) are passive flow control devices commonly employed to prevent flow separation on wind turbine blades. They mitigate the damaging fatigue loads resulting from stall while increasing lift and consequently lead to rotor torque increase. This work summarizes a research project aimed at optimizing the sectional as well as the full rotor-blade aerodynamics using VGs. The effects of chordwise position, spanwise spacing and VG size were studied with force balance measurements of a 2D wing section. Reducing the distance between adjacent VGs produced large increases in the static stall angle and maximum lift, but also resulted in a significant increase in drag as well as sharp lift excursions at angles exceeding the static stall angle. The optimal chordwise position of the vortex generators was found to be in the range of x/c = 15%–20%, where a comparatively low parasitic drag and a smooth post-stall lift curve were achieved. Particle Image Velocimetry measurements were conducted at various chordwise positions to provide insight into the interaction between adjacent streamwise vortices. The experimental aerodynamic performance curves of the optimal VG configuration were used to project their effect on wind turbine blade aerodynamics. Three different rotorblades were designed and several stall and pitch regulated wind turbine models were simulated by means of a Blade Element Momentum (BEM) code (QBlade) developed by Smart Blade GmbH. The performance of the rotorblades with and without VGs was simulated in order to assess their effect on the aerodynamic performance and loads. Finally, previously measured steady state performance curves under high-roughness conditions were used to simulate the detrimental effect of surface roughness on the performance of the aforementioned rotorblades. This allows for an estimate of the potential of the VGs to be employed as retrofit elements for performance recovery of blades with a contaminated surface.


2021 ◽  
Vol 169 ◽  
pp. 953-969
Author(s):  
Leon Mishnaevsky ◽  
Charlotte Bay Hasager ◽  
Christian Bak ◽  
Anna-Maria Tilg ◽  
Jakob I. Bech ◽  
...  

2021 ◽  
pp. 0309524X2110071
Author(s):  
Usman Butt ◽  
Shafqat Hussain ◽  
Stephan Schacht ◽  
Uwe Ritschel

Experimental investigations of wind turbine blades having NACA airfoils 0021 and 4412 with and without tubercles on the leading edge have been performed in a wind tunnel. It was found that the lift coefficient of the airfoil 0021 with tubercles was higher at Re = 1.2×105 and 1.69×105 in post critical region (at higher angle of attach) than airfoils without tubercles but this difference relatively diminished at higher Reynolds numbers and beyond indicating that there is no effect on the lift coefficients of airfoils with tubercles at higher Reynolds numbers whereas drag coefficient remains unchanged. It is noted that at Re = 1.69×105, the lift coefficient of airfoil without tubercles drops from 0.96 to 0.42 as the angle of attack increases from 15° to 20° which is about 56% and the corresponding values of lift coefficient for airfoil with tubercles are 0.86 and 0.7 at respective angles with18% drop.


2018 ◽  
Vol 72 ◽  
pp. 01007 ◽  
Author(s):  
Faizan Afzal ◽  
Muhammad S. Virk

This paper describes a brief overview of main issues related to atmospheric ice accretion on wind turbines installed in cold climate region. Icing has significant effects on wind turbine performance particularly from aerodynamic and structural integrity perspective, as ice accumulates mainly on the leading edge of the blades that change its aerodynamic profile shape and effects its structural dynamics due to added mass effects of ice. This research aims to provide an overview and develop further understanding of the effects of atmospheric ice accretion on wind turbine blades. One of the operational challenges of the wind turbine blade operation in icing condition is also to overcome the process of ice shedding, which may happen due to vibrations or bending of the blades. Ice shedding is dangerous phenomenon, hazardous for equipment and personnel in the immediate area.


2020 ◽  
Vol 5 (3) ◽  
pp. 977-981 ◽  
Author(s):  
Anna-Maria Tilg ◽  
Charlotte Bay Hasager ◽  
Hans-Jürgen Kirtzel ◽  
Poul Hummelshøj

Abstract. Leading-edge erosion (LEE) of wind turbine blades is caused by the impact of hydrometeors, which appear in a solid or liquid phase. A reduction in the wind turbine blades' tip speed during defined precipitation events can mitigate LEE. To apply such an erosion-safe mode, a precipitation nowcast is required. Theoretical considerations indicate that the time a raindrop needs to fall to the ground is sufficient to reduce the tip speed. Furthermore, it is described that a compact, vertically pointing radar that measures rain at different heights with a sufficiently high spatio-temporal resolution can nowcast rain for an erosion-safe mode.


Author(s):  
Yan Wang ◽  
Liang Wang ◽  
Chenglin Duan ◽  
Jian Zheng ◽  
Zhe Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document