Offshore wind power intermittency: The effect of connecting production sites along the Norwegian continental shelf
Abstract. This study uses a unique set of hourly wind speed data observed over a period of 16 years to quantify the potential of collective offshore wind power production. We address the well-known intermittency problem of wind power for five locations along the Norwegian continental shelf. Mitigation of wind power intermittency is investigated using a hypothetical electricity grid. The degree of mitigation is examined by connecting different configurations of the sites. Along with the wind power smoothing effect, we explore the risk probability of the occurrence and duration of wind power shut-down. Typical large-scale atmospheric situations resulting in long term shut-down periods are identified. We find that both the wind power variability and the risk of not producing any wind power decrease significantly with an increasing array of connected sites. The risk of no wind power production for a given hour is reduced from 10 % for a single site to under 4 % for two sites. Increasing the array-size further reduces the risk, but to a lesser extend. The average atmospheric weather pattern resulting in wind speed that is too low (too high) to produce wind power is associated with a high- (low-) pressure system near the production sites.