scholarly journals Model tests of a 10 MW semi-submersible floating wind turbine under waves and wind using hybrid method to integrate the rotor thrust and moments

2021 ◽  
Author(s):  
Felipe Vittori ◽  
José Azcona ◽  
Irene Eguinoa ◽  
Oscar Pires ◽  
Alberto Rodríguez ◽  
...  

Abstract. This paper describes the results of a wave tank test campaign of a 1/49 scaled SATH 10MW INNWIND floating platform. The Software-in-the-Loop (SiL) hybrid method was used to include the wind turbine thrust and the in-plane rotor moments My – Mz. Experimental results are compared with a numerical model developed in OpenFAST of the floating wind turbine. The tank test campaign was carried out in the scaled model tested at the Deep Ocean Basin from the Lir National Ocean TF at Cork, Ireland. This floating substructure design was adapted by Saitec to support the 10MW INNWIND wind turbine within the ARCWIND project with the aim of withstanding the environmental conditions of the European Atlantic Area region. CENER provided the wind turbine controller specially designed for the SATH 10MW configuration. A description of the experimental set up, force actuator configuration and the numeric aerodynamic parameters are provided in this work. The most relevant experimental results under wind and wave loading are showed in time series and frequency domain. The influence of the submerged geometry variations in the pitch natural frequency is discussed. The paper shows the simulation of a case with rated wind speed, where the tilted geometry for the computation of the hydrostatic and hydrodynamic properties of the submerged substructure is considered. This case provides a better agreement of the pitch natural frequency with the experiments, than a equivalent simulation using the undisplaced geometry mesh for the computation of the hydrodynamic and hydrostatic properties.

Author(s):  
Madjid Karimirad ◽  
Erin E. Bachynski ◽  
Petter Andreas Berthelsen ◽  
Harald Ormberg

In this paper, integrated analyses performed in SIMA are compared against experimental results obtained using real-time hybrid model testing (ReaTHM®) carried out in the ocean basin facilities of MARINTEK in October 2015. The experimental data is from a 1:30 scaled model of a semi-submersible wind turbine. Coupled aero-hydro-servo-elastic simulations are performed in MARINTEK’s SIMA software. The present work extends previous results from Berthelsen et al. [1] by including a blade element/momentum (BEM) model for the rotor forces in SIMA and comparing the coupled responses of the system to the experimental results. The previously presented hydrodynamic model is also further developed, and the importance of second order loads (and applicability of approximate methods for their calculations) is examined. Low-frequency hydrodynamic excitation and damping are seen to be important, but these loads include a combination of viscous and potential forces. For the selected concept, the second order potential flow forces have limited effects on the responses.


Author(s):  
Bonjun J. Koo ◽  
Andrew J. Goupee ◽  
Richard W. Kimball ◽  
Kostas F. Lambrakos

Wind energy is a promising alternate energy resource. However, the on-land wind farms are limited by space, noise, and visual pollution and, therefore, many countries build wind farms near the shore. Until now, most offshore wind farms have been built in relatively shallow water (less than 30 m) with fixed tower type wind turbines. Recently, several countries have planned to move wind farms to deep water offshore locations to find stronger and steadier wind fields as compared to near shore locations. For the wind farms in deeper water, floating platforms have been proposed to support the wind turbine. The model tests described in this paper were performed at MARIN (maritime research institute netherlands) with a model setup corresponding to a 1:50 Froude scaling. The wind turbine was a scaled model of the national renewable energy lab (NREL) 5 MW horizontal axis reference wind turbine supported by three different generic floating platforms: a spar, a semisubmersible, and a tension-leg platform (TLP). The wave environment used in the tests is representative of the offshore in the state of Maine. In order to capture coupling between the floating platform and the wind turbine, the 1st bending mode of the turbine tower was also modeled. The main purpose of the model tests was to generate data on coupled motions and loads between the three floating platforms and the same wind turbine for the operational, design, and survival seas states. The data are to be used for the calibration and improvement of the existing design analysis and performance numerical codes. An additional objective of the model tests was to establish the advantages and disadvantages among the three floating platform concepts on the basis of the test data. The paper gives details of the scaled model wind turbine and floating platforms, the setup configurations, and the instrumentation to measure motions, accelerations, and loads along with the wind turbine rpm, torque, and thrust for the three floating wind turbines. The data and data analysis results are discussed in the work of Goupee et al. (2012, “Experimental Comparison of Three Floating Wind Turbine Concepts,” OMAE 2012-83645).


2020 ◽  
Vol 1618 ◽  
pp. 032048
Author(s):  
O. Pires ◽  
J. Azcona ◽  
F. Vittori ◽  
I. Bayati ◽  
S. Gueydon ◽  
...  

Author(s):  
Simone Di Carlo ◽  
Alessandro Fontanella ◽  
Alan Facchinetti ◽  
Sara Muggiasca ◽  
Federico Taruffi ◽  
...  

Abstract The scope of this work is to investigate if and how it is possible to estimate the incident wave elevation on a floating wind turbine, with the purpose of improved control strategies. A Kalman based algorithm is proposed, which receives as input the rigid motions of the floater and estimates the wave elevation hitting the floating platform. The structure of the observer is described and the estimator is tested numerically on the OC3-Hywind platform coupled with the 5-MW reference wind turbine from NREL. Limitations to the estimation procedure are discussed. Finally the algorithm is tested on experimental data coming from a wave basin experimental campaign on a floating wind turbine model. The algorithm still needs improvements, but results are encouraging in the development of this technology.


Wind Energy ◽  
2019 ◽  
Vol 22 (10) ◽  
pp. 1402-1413 ◽  
Author(s):  
José Azcona ◽  
Faisal Bouchotrouch ◽  
Felipe Vittori

Author(s):  
Fei Duan ◽  
Zhiqiang Hu ◽  
Jin Wang

Wind power has great potential because of its clean and renewable production compared to the traditional power. Most of the present researches for floating wind turbine rely on the hydro-aero-elastic-servo simulation codes and have not been exhaustively validated yet. Thus, model tests are needed and make sense for its high credibility to master the kinetic characters of floating offshore structures. The characters of kinetic responses of the spar-type wind turbine are investigated through model test research technique. This paper describes the methodology for wind/wave model test that carried out at Deepwater Offshore Basin in Shanghai Jiao Tong University at a scale of 1:50. A Spar-type floater was selected to support the wind turbine in this test and the model blade was geometrically scaled down from the original NREL 5 MW reference wind turbine blade. The detail of the scaled model of wind turbine and the floating supporter, the test set-up configuration, the mooring system, the high-quality wind generator that can create required homogeneous and low turbulence wind, and the instrumentations to capture loads, accelerations and 6 DOF motions are described in detail, respectively. The isolated wind/wave effects and the integrated wind-wave effects on the floating wind turbine are analyzed, according to the test results.


Author(s):  
Pauline Louazel ◽  
Daewoong Son ◽  
Bingbin Yu

Abstract During the shutdown of a wind turbine, the turbine blades rotate from their typical operating angle to their typical idling angle (approximately 90 degrees) at a specific speed, called the blade pitch rate. This operation leads to rapid loss of thrust force on the turbine resulting in a corresponding heel response of the floating structure. This rapid variation of loads at the turbine also leads to large nacelle accelerations which are transferred to the bottom of the tower and consequently to the floating structure, making the turbine shutdowns, and specifically emergency shutdowns, of significance in the design and certification of the turbine, tower and floating structure. In case of an emergency shutdown (for instance due to a grid loss), the blades typically pitch from 0 degree to 90 degrees in approximately 20–35 seconds, whereas this time period can be more than 100 seconds in the case of a normal shutdown [6]. For fixed-bottom wind turbines, increasing the blade pitch rate leads to an increase of instantaneous loads at the nacelle and tower, leading to the emergency shutdown pitch rate being usually chosen to be as low as possible. In the case of a floating wind turbine, however, water/platform interaction effects such as wave induced damping on the floating platform, challenge this approach. Indeed, increasing the blade pitch rate can increase the effect of wave-induced damping on the floater and therefore reduce the loads on the overall structure. On the other hand, reducing the blade pitch rate during an emergency shutdown can reduce this damping effect and increase those loads, meaning that an optimal blade pitch rate for a fixed bottom turbine is not necessarily optimal for a floating wind turbine. This paper will examine the behavior of a floating offshore semi-submersible platform, the WindFloat, during turbine shutdown operations, with an emphasis on the blade pitch rate during an emergency shutdown.


Author(s):  
Hideyuki Suzuki ◽  
Masaru Kurimoto ◽  
Yu Kitahara ◽  
Yukinari Fukumoto

A wide range of platform types have been investigated for a floating wind turbine. Most of the research projects on a floating wind turbine assume that a land based wind turbine is to be installed on a platform with minimum modification to reduce the overall cost. For this reason, allowable limit of a motion of wind turbine is limited to lower value, for example, five degrees for static inclination and one to two degrees for pitching motion. So far analysis and design of motion characteristics of the platform have been main research concern. One key research area less focused is floating platform related risk. If the wind energy would be one of the major sources of power supply, wind farms which are comprised of large number of floating wind turbines must be deployed in the ocean. Wind turbines will be closely spaced in a wind farm so that installation cost should be minimized. In such an arrangement, a wind turbine accidentally started drifting has some possibility to collide or contact with the moorings of neighboring wind turbines and might cause progressive drifting of wind turbines. This paper present investigation of scenario of progressive drifting of floating wind turbines and evaluate risk of the scenario. Quantitative risk of several arrangements of wind farms is estimated. Effect of arrangement of wind turbines in a wind farm and safety factor used in design moorings is discussed.


Author(s):  
Ryan Bezzina ◽  
Tonio Sant ◽  
Daniel Micallef

Abstract Significant research in the field of Floating Offshore Wind Turbine (FOWT) rotor aerodynamics has been documented in literature, including validated aerodynamic models based on Blade Element Momentum (BEM) and vortex methods, amongst others. However, the effects of platform induced motions on the turbine wake development downstream of the rotor plane or any research related to such areas is rather limited. The aims of this paper are two-fold. Initially, results from a CFD-based Actuator Disc (AD) code for a fixed (non-surging) rotor are compared with those obtained from a Blade Element Momentum (BEM) theory, as well as previously conducted experimental work. Furthermore, the paper also emphasises the effect of tip speed ratio (TSR) on the rotor efficiency. This is followed by the analysis of floating wind turbines specifically in relation to surge displacement, through an AD technique implemented in CFD software, ANSYS Fluent®. The approach couples the Blade Element Theory (BET) for estimating rotating blade loads with a Navier Stokes solver to simulate the turbine wake. With regards to the floating wind turbine cases, the code was slightly altered such that BET was done in a transient manner i.e. following sinusoidal behaviour of waves. The AD simulations were performed for several conditions of TSRs and surge frequencies, at a constant amplitude. Similar to the fixed rotor analysis, significant parameters including thrust and power coefficients, amongst others, were studied against time and surge position. The floating platform data extracted from the AD approach was compared to the non-surging turbine data obtained, to display platform motion effects clearly. Data from hot wire near wake measurements and other simulation methods were also consulted.


Author(s):  
Marc Guyot ◽  
Cyrille De Mourgues ◽  
Gérard Le Bihan ◽  
Pierre Parenthoine ◽  
Julien Templai ◽  
...  

Abstract EOLINK have developed an innovative floating wind turbine in which the single tower is replaced by a set of legs providing a pyramidal architecture. A 1/10th scale prototype of EOLINK’s 12MW concept has been connected to the grid in April 2018 in France. Firstly, the paper describes the technical specifications of this device. Both the turbine and the floater have been designed using Froude scaling, in order to properly represent the EOLINK full scale 12MW concept. The device has been devised from scratch and deploys a Permanent Magnet Synchronous Generator (PMSG) and an individual electric blade pitch system. The patented mooring system comprises a single point mooring (SPM) system able to withstand very high tide ranges in shallow waters. Regarding monitoring, motions have been recorded using both an Inertial Measurement Unit (IMU) and high precision Global Positioning System (GPS) sensors. Mooring lines tensions have also been monitored. Wind is recorded using both an embedded anemometer on the floating turbine and onshore anemometers installed by IFREMER. This Institute has also measured wave height using a wave recorder. Secondly, experimental results during production and storm events are presented. The encountered environmental conditions highlight the capability of the EOLINK design to withstand harsh wind events, and its ability to produce 12MW using a small sized semi-submersible floater. Then, numerical analysis using FAST and Flexcom is compared with experimental results. Static analysis, decay-tests, Response Amplitude Operators (RAOs) and Power Spectral Densities (PSDs) results are detailed. Power production and the embedded control command capabilities are also presented.


Sign in / Sign up

Export Citation Format

Share Document