scholarly journals RESEARCH IN THE FIELD OF GLASS FORMATION IN THE ASS-ERS SYSTEM

2021 ◽  
Vol 7 (8(62)) ◽  
pp. 35-38
Author(s):  
DUNIA TALEH HASANOVA

In order to determine the region of glass formation between the AsS and ErS compounds, we studied the methods of physicochemical analysis: differential thermal (DTA), X-ray phase (XRD), microstructural (MCA), as well as by measuring microhardness and density. The eutectic composition between the AsS and ErS compounds is 10 mol. % ErS and temperature 280oC. At a cooling rate v = 102 K / min, the glass transition region based on AsS reaches 10 mol. % ErS. Some physicochemical properties of alloys from the region of glass formation have been investigated. The area of homogeneity based on AsS reaches up to 1.5 mol. % ErS.

2000 ◽  
Vol 644 ◽  
Author(s):  
Y. Li

AbstractOnset temperature, Tm and offset temperature (liquidus) Tl of melting of a series of bulk glass forming alloys based on La, Mg, and Pd have been measured by studying systematically the melting behaviour of these alloys using DTA or DSC. Bulk metallic glass formation has been found to be most effective at or near their eutectic points and less effective for off-eutectic alloys. Reduced glass transition temperature Trg given by Tg/Tl is found to show a stronger correlation with critical cooling rate or critical section thickness for glass formation than Trg given by Tg/Tm.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Nilesh Tiwari ◽  
A. A. Shaikh

AbstractBuckling and vibration study of the shape memory polymer composites (SMPC) across the glass transition temperature under heterogeneous loading conditions are presented. Finite element analysis based on C° continuity equation through the higher order shear deformation theory (HSDT) is employed considering non linear Von Karman approach to estimate critical buckling and vibration for the temperature span from 273 to 373 K. Extensive numerical investigations are presented to understand the effect of temperature, boundary conditions, aspect ratio, fiber orientations, laminate stacking and modes of phenomenon on the buckling and vibration behavior of SMPC beam along with the validation and convergence study. Effect of thermal conditions, particularly in the glass transition region of the shape memory polymer, is considerable and presents cohesive relation between dynamic modulus properties with magnitude of critical buckling and vibration. Moreover, it has also been inferred that type of axial loading condition along with the corresponding boundary conditions significantly affect the buckling and vibration load across the glass transition region.


1977 ◽  
Vol 47 (1) ◽  
pp. 62-66 ◽  
Author(s):  
J. R. Brown ◽  
B. C. Ennis

DTA, TG, and TMA curves of commercial Kevlar® 49 and Nomex® fibers have been used to assess their behavior at high temperatures. The fibers lost absorbed water around 100°C, and a glass transition was reflected in the DTA and TMA curves in the region of 300°C. Difficulties in the interpretation of DTA and TMA curves in the glass-transition region and in the assignments of Tv‘s for these high-performance fibers are discussed. Whereas Kevlar 49 showed both a crystalline melting point (560°C) and a sharp endothermal thermal decomposition (590°C), Nomex showed only the latter (440°C) and no evidence of melting from the DTA curves. The endothermal decomposition peaks apparently correspond to “polymer melt temperatures” reported for related materials, and correlate well with the TG and TMA features. During thermal analysis of Kevlar 49, oxidation occurs more readily than thermal decomposition, but the latter predominates for Nomex. Differences between dyed and undyed Nomex were due to differences in yarn constitution.


Sign in / Sign up

Export Citation Format

Share Document