scholarly journals A New Colour Quality Model for Ultra-High Efficiency Light Sources with Discontinuous Spectra

Author(s):  
Jason A Koerper
2020 ◽  
pp. 50-58
Author(s):  
Dmitriy Kulikov ◽  

In the present article the author gives the results work to create a numerical thermal model of infrared (IR) emitter on the base of tubular halogen lamp (THL) KGT-220-1300, as one of the elements of the equipment used when conducting thermal vacuum tests (TVT) of satellites. As a tool to solve complex problem of heat transfer used software Thermal Model Generator. Variants of calculations for the operation of the lamp at different voltages are carried out. The results of mathematical modeling using band approximation of the properties of the system elements in combination with the Monte Carlo method in solving the problem of heat exchange by radiation showed high efficiency. The performed analysis of the correctness of the results showed good convergence with the data of previous experiments on measuring the temperature of the quartz bulb, which confirms the reliability of the results. Getting a high-quality model of this type at the disposal of satellite thermal engineer is an important step in the complex work aimed at conducting end-to-end mathematical modeling of satellite thermal design, and will also solve a number of issues related to the methodological support of TVT, their implementation and optimization.


Author(s):  
Christian Viehweger ◽  
Thomas Keutel ◽  
Laura Kasper ◽  
Tim Pfeifer ◽  
Olfa Kanoun

A standardized characterization method for solar cells is only available for outdoor use. For the supply of wireless sensor nodes with energy harvesting also indoor applications are of interest. Without comparable values it is difficult to select the proper cell for defined environmental conditions. Therefore it is necessary to make an investigation on their behavior individually to be able to make a selection. The work presented here shows the characterization of solar cells according to their spectral behavior, the influence of illumination and the usage of this information about the maximum power to design an energy management. Therefore a test structure with a monochromator, different light sources, source measure units and instruments for measuring intensity and spectra has been developed. The measurements help to select the best solar cell out of a repertory for indoor energy harvesting applications. As for indoor applications also the ability to make use of weak light and a high efficiency is important, the energy management has been improved using a dual DC/DC strategy that allows it to make efficient use of solar cells within difficult situations.


CrystEngComm ◽  
2020 ◽  
Vol 22 (37) ◽  
pp. 6106-6115 ◽  
Author(s):  
Yang Liu ◽  
Mingming Jiang ◽  
Kai Tang ◽  
Kunjie Ma ◽  
Yuting Wu ◽  
...  

Benefitting from alloyed Au and Ag nanorods with desired plasmons, single ZnO:Ga microwire assembled on a p-Si template, can provide a promising candidate for the realization of high-efficiency Si-based light sources


2019 ◽  
Vol 11 (10) ◽  
pp. 2867 ◽  
Author(s):  
Pedro García-Caparrós ◽  
Eva Almansa ◽  
Rosa Chica ◽  
María Lao

Specific wavebands may allow precise control of plant growth. However, light sources must be carefully evaluated before the large-scale use of supplemental light sources can be implemented. Dieffenbachia maculata “Compacta” plants were grown for 8 weeks in pots in a growth chamber under tightly controlled temperature and humidity in order to assess the effects of supplemental light. Three treatments were applied: (i) using 18-W fluorescent bulbs (T1), (ii) using the same bulbs with supplemental light emitting diodes (LEDs) (Pure Blue and Pure Red Mix-Light-Emitting Diodes (BR-LEDs)) (T2), and (iii) using high-efficiency TL5 fluorescents (T3). Plant biomass, mineral composition, and physiological and photosynthetic parameters were assessed under each light treatment. Total plant dry weight was highest in plants grown under treatments T1 and T3. Other differences were observed between different light treatments, including variation in biomass partitioning as well as N and K concentrations in roots, stems, and leaves. Further, proline and indole 3-acetic acid (IAA) levels were higher in plants grown under the T1 treatment, whereas total soluble sugars and starch were higher in plants grown under treatment T3. Plants grown under treatment T1 had the lowest chlorophyll concentrations. No differences were observed in organ water content and P concentration. T2 was not the best treatment, as expected. The model proposed a linear regression between integrated use of spectral energy (IUSE) and total dry weight (TDW), which showed a good relationship with an R2 value of 0.83. Therefore, we recommend this methodology to discern the effects of the different spectral qualities on plant biomass.


2006 ◽  
Vol 78 (6) ◽  
pp. 1239-1252 ◽  
Author(s):  
W. W. Stoffels ◽  
A. J. Flikweert ◽  
T. Nimalasuriya ◽  
J. J. A. M. van der Mullen ◽  
G. M. W. Kroesen ◽  
...  

Metal halide lamps are very efficient light sources based on a Hg plasma arc with metal halide salt additions. In spite of their high efficiency, the lamps suffer from several problems, such as color separation and instabilities, which currently hinder large-scale use. These phenomena are caused by a complex interaction of convection and diffusion flows in the plasma. In order to unravel the various contributions, experiments under microgravity have been performed where convection is absent. The experiments confirm the previously held qualitative views, but also provide absolute data on densities and temperatures that will be used to validate numerical models of these lamps.


SMPTE Journal ◽  
1997 ◽  
Vol 106 (4) ◽  
pp. 210-216
Author(s):  
W. E. Glenn ◽  
C. E. Holton ◽  
G. J. Dixon ◽  
P. J. Bos

Micromachines ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 859
Author(s):  
Zan Zhang ◽  
Beiju Huang ◽  
Zanyun Zhang ◽  
Chuantong Cheng ◽  
Bing Bai ◽  
...  

We propose a broadband high-efficiency grating coupler for perfectly vertical fiber-to-chip coupling. The up-reflection is reduced, hence enhanced coupling efficiency is achieved with the help of a Fabry-Perot-like cavity composed of a silicon nitride reflector and the grating itself. With the theory of the Fabry-Perot cavity, the dimensional parameters of the coupler are investigated. With the optimized parameters, up-reflection in the C-band is reduced from 10.6% to 5%, resulting in an enhanced coupling efficiency of 80.3%, with a 1-dB bandwidth of 58 nm, which covers the entire C-band. The minimum feature size of the proposed structure is over 219 nm, which makes our design easy to fabricate through 248 nm deep-UV lithography, and lowers the fabrication cost. The proposed design has potential in efficient and fabrication-tolerant interfacing applications, between off-chip light sources and integrated chips that can be mass-produced.


2006 ◽  
Vol 37 (1) ◽  
pp. 1724 ◽  
Author(s):  
Hidefumi Sakata ◽  
Susumu Aruga ◽  
Akira Egawa ◽  
Eiji Morikuni ◽  
Hidehiro Akahane ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document