Contingency Ranking for Determining Total Transfer Capability from Voltage Stability Point of View

2009 ◽  
Vol 129 (12) ◽  
pp. 1523-1531 ◽  
Author(s):  
Nattawut Paensuwan ◽  
Akihiko Yokoyama ◽  
S. C. Verma ◽  
Yoshiki Nakachi

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Ali Kargarnejad ◽  
Mohsen Taherbaneh ◽  
Amir Hosein Kashefi

Tracking maximum power point of a solar panel is of interest in most of photovoltaic applications. Solar panel modeling is also very interesting exclusively based on manufacturers data. Knowing that the manufacturers generally give the electrical specifications of their products at one operating condition, there are so many cases in which the specifications in other conditions are of interest. In this research, a comprehensive one-diode model for a solar panel with maximum obtainable accuracy is fully developed only based on datasheet values. The model parameters dependencies on environmental conditions are taken into consideration as much as possible. Comparison between real data and simulations results shows that the proposed model has maximum obtainable accuracy. Then a new fuzzy-based controller to track the maximum power point of the solar panel is also proposed which has better response from speed, accuracy and stability point of view respect to the previous common developed one.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2375
Author(s):  
Yuwei Zhang ◽  
Wenying Liu ◽  
Yue Huan ◽  
Qiang Zhou ◽  
Ningbo Wang

The rapidly increasing penetration of wind power into sending-side systems makes the wind power curtailment problem more severe. Enhancing the total transfer capability (TTC) of the transmission channel allows more wind power to be delivered to the load center; therefore, the curtailed wind power can be reduced. In this paper, a new method is proposed to enhance TTC, which works by optimizing the day-ahead thermal generation schedules. First, the impact of thermal generation plant/unit commitment on TTC is analyzed. Based on this, the day-ahead thermal generation scheduling rules to enhance TTC are proposed herein, and the corresponding optimization models are established and solved. Then, the optimal day-ahead thermal generation scheduling method to enhance TTC is formed. The proposed method was validated on the large-scale wind power base sending-side system in Gansu Province in China; the results indicate that the proposed method can significantly enhance TTC, and therefore, reduce the curtailed wind power.


2015 ◽  
Vol 67 (5) ◽  
pp. 1024-1045
Author(s):  
Samia Ashraf ◽  
Haniya Azam ◽  
Barbu Berceanu

AbstractThe symmetric group 𝓢n acts on the power set 𝓟(n) and also on the set of square free polynomials in n variables. These two related representations are analyzed from the stability point of view. An application is given for the action of the symmetric group on the cohomology of the pure braid group.


2020 ◽  
Vol 35 (6) ◽  
pp. 4824-4835 ◽  
Author(s):  
Hemin Golpira ◽  
Azin Atarodi ◽  
Shiva Amini ◽  
Arturo Roman Messina ◽  
Bruno Francois ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document