scholarly journals Evaluation of ESSENCE Syndromic Definitions for ED Visits Related to Falls in Icy Weather

2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Jessica Hensley ◽  
Sandra Gonzalez ◽  
Derry Stover ◽  
Thomas Safranek ◽  
Ming Qu

ObjectiveThis project evaluated and compared two ESSENCE syndromic surveillance definitions for emergency department (ED) visits related to injuries associated with falls in icy weather using 2016-2017 data from two hospitals in Douglas County, Nebraska. The project determined the validity of the syndromic surveillance definition as applied to chief complaint and triage notes and compared the chief complaint data alone to chief complaint plus triage notes definitions to find the most reliable definition for ED visits resulting from fall-related injuries.IntroductionIcy weather events increase the risk for injury from falls on untreated or inadequately treated surfaces. These events often result in ED visits, which represents a significant public health and economic impact1.The goal of this project was to start the process toward an evaluation of the public health impact and the economic impact of falls associated to icy weather in Douglas County, NE for the ultimate purpose of designing and implementing injury prevention related public health protection measures. Additionally, the validated definition will be used by NE DHHS Occupational Health Surveillance Program to identify work related ice-related fall injuries that were covered by workers compensation. To achieve the goal, the first step was to identify a valid and reliable syndromic surveillance. Specifically, this project looked at the applicability of the ESSENCE syndromic surveillance definitions related to injuries associated with falls. Two syndromic surveillance definitions were compared, one that includes triage note and chief complaint search terms, and another that only includes chief complaint. The hypothesis was that the ESSENCE syndromic surveillance definition that includes triage note and chief complaint search terms, rather than the syndromic surveillance definition that only includes chief complaint, would be more effective at identifying ED visits resulting from fall-related injuries.MethodsThis project included 751 EDs visits from two hospitals located in Douglas County Nebraska, during ice events on December 16-18, 2016, January 10-12, 2017, and January 15-18, 2017.Two ESSENCE syndromic surveillance definitions, “Chief Complaint or Triage Note” and “Chief Complaint Only,” were used to identify fall-related ED visits from two participating EDs in Douglas County, NE. In the chief complaint and the triage note fields, the keywords selected were: fall, fell, or slip. In that the ESSENCE time series analysis indicated the increase in the number of falls were associated with ice events from baseline, an assumption was made that the increase was a result of the weather. Then, the Syndromic Surveillance Event Detection of Nebraska database was used to find the patient and visit identification numbers. These two identification numbers were used to identify the EHRs needed for a gold standard review. Chart data was used to evaluate the reliability and validity of the two syndromic surveillance definitions for the detection of falls on the study dates. This analysis was used to find the sensitivity, specificity and predictive value.ResultsThe sensitivity, specificity and positive predictive value for the “Chief Complaint Only” definition yielded 71.7%, 100%, and 100% respectively. The “Chief Complaint or Triage Note” definition results were 90.9%, 98.8%, and 95.5% for these analyses. Negative predictive value for both definitions was 97.5%.ConclusionsThe sensitivity indicates both definitions are unlikely to give false positives, and the positive predictive value indicates both definitions successfully identify most of the true positives found in the visits. However, the “Chief Complaint Only” definition resulted in a minimally higher specificity and positive predictive value. Therefore, the results indicate that although both definitions have similar specificity and positive predictive value, the “Chief Complaint or Triage Note” definition is more likely than the “Chief Complaint Only” definition to correctly identify ED visits related to falls in icy weather.References1. Beynon C, Wyke S, Jarman I, Robinson M, Mason J, Murphy K, Bellis MA, Perkins C. The cost of emergency hospital admissions for falls on snow and ice in England during winter 2009/10: a cross sectional analysis. Environmental Health 2011;10(60).

2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Marissa L. Zwald ◽  
Kristin M. Holland ◽  
Francis Annor ◽  
Aaron Kite-Powell ◽  
Steven A. Sumner ◽  
...  

ObjectiveTo describe epidemiological characteristics of emergency department (ED) visits related to suicidal ideation (SI) or suicidal attempt (SA) using syndromic surveillance data.IntroductionSuicide is a growing public health problem in the United States.1 From 2001 to 2016, ED visit rates for nonfatal self-harm, a common risk factor for suicide, increased 42%.2–4 To improve public health surveillance of suicide-related problems, including SI and SA, the Data and Surveillance Task Force within the National Action Alliance for Suicide Prevention recommended the use of real-time data from hospital ED visits.5 The collection and use of real-time ED visit data on SI and SA could support a more targeted and timely public health response to prevent suicide.5 Therefore, this investigation aimed to monitor ED visits for SI or SA and to identify temporal, demographic, and geographic patterns using data from CDC’s National Syndromic Surveillance Program (NSSP).MethodsCDC’s NSSP data were used to monitor ED visits related to SI or SA among individuals aged 10 years and older from January 1, 2016 through July 31, 2018. A syndrome definition for SI or SA, developed by the International Society for Disease Surveillance’s syndrome definition committee in collaboration with CDC, was used to assess SI or SA-related ED visits. The syndrome definition was based on querying the chief complaint history, discharge diagnosis, and admission reason code and description fields for a combination of symptoms and Boolean operators (for example, hang, laceration, or overdose), as well as ICD-9-CM, ICD-10-CM, and SNOMED diagnostic codes associated with SI or SA. The definition was also developed to include common misspellings of self-harm-related terms and to exclude ED visits in which a patient “denied SI or SA.”The percentage of ED visits involving SI or SA were analyzed by month and stratified by sex, age group, and U.S. region. This was calculated by dividing the number of SI or SA-related ED visits by the total number of ED visits in each month. The average monthly percentage change of SI or SA overall and for each U.S. region was also calculated using the Joinpoint regression software (Surveillance Research Program, National Cancer Institute).6ResultsAmong approximately 259 million ED visits assessed in NSSP from January 2016 to July 2018, a total of 2,301,215 SI or SA-related visits were identified. Over this period, males accounted for 51.2% of ED visits related to SI or SA, and approximately 42.1% of SI or SA-related visits were comprised of patients who were 20-39 years, followed by 40-59 years (29.7%), 10-19 years (20.5%), and ≥60 years (7.7%).During this period, the average monthly percentage of ED visits involving SI or SA significantly increased 1.1%. As shown in Figure 1, all U.S. regions, except for the Southwest region, experienced significant increases in SI or SA ED visits from January 2016 to July 2018. The average monthly increase of SI or SA-related ED visits was 1.9% for the Midwest, 1.5% for the West (1.5%), 1.1% for the Northeast, 0.9% for the Southeast, and 0.5% for the Southwest.ConclusionsED visits for SI or SA increased from January 2016 to June 2018 and varied by U.S. region. In contrast to previous findings reporting data from the National Electronic Injury Surveillance Program – All-Injury Program, we observed different trends in SI or SA by sex, where more ED visits were comprised of patients who were male in our investigation.2 Syndromic surveillance data can fill an existing gap in the national surveillance of suicide-related problems by providing close to real-time information on SI or SA-related ED visits.5 However, our investigation is subject to some limitations. NSSP data is not nationally representative and therefore, these findings are not generalizable to areas not participating in NSSP. The syndrome definition may under-or over-estimate SI or SA based on coding differences and differences in chief complaint or discharge diagnosis data between jurisdictions. Finally, hospital participation in NSSP can vary across months, which could potentially contribute to trends observed in NSSP data. Despite these limitations, states and communities could use this type of surveillance data to detect abnormal patterns at more detailed geographic levels and facilitate rapid response efforts. States and communities can also use resources such as CDC’s Preventing Suicide: A Technical Package of Policy, Programs, and Practices to guide prevention decision-making and implement comprehensive suicide prevention approaches based on the best available evidence.7References1. Stone DM, Simon TR, Fowler KA, et al. Vital Signs: Trends in State Suicide Rates — United States, 1999–2016 and Circumstances Contributing to Suicide — 27 States, 2015. Morb Mortal Wkly Rep. 2018;67(22):617-624.2. CDCs National Center for Injury Prevention and Control. Web-based Injury Statistics Query and Reporting System (WISQARS). https://www.cdc.gov/injury/wisqars/index.html. Published 2018. Accessed September 1, 2018.3. Mercado M, Holland K, Leemis R, Stone D, Wang J. Trends in emergency department visits for nonfatal self-inflicted injuries among youth aged 10 to 24 years in the United States, 2005-2015. J Am Med Assoc. 2017;318(19):1931-1933. doi:10.1001/jama.2017.133174. Olfson M, Blanco C, Wall M, et al. National Trends in Suicide Attempts Among Adults in the United States. JAMA Psychiatry. 2017;10032(11):1095-1103. doi:10.1001/jamapsychiatry.2017.25825. Ikeda R, Hedegaard H, Bossarte R, et al. Improving national data systems for surveillance of suicide-related events. Am J Prev Med. 2014;47(3 SUPPL. 2):S122-S129. doi:10.1016/j.amepre.2014.05.0266. National Cancer Institute. Joinpoint Regression Software. https://surveillance.cancer.gov/joinpoint/. Published 2018. Accessed September 1, 2018.7. Centers for Disease Control and Prevention. Preventing Suicide: A Technical Package of Policy, Programs, and Practices. 


2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Kristin Arkin

ObjectiveIn August 2017, a large influx of visitors was expected to view the total solar eclipse in Idaho. The Idaho Syndromic Surveillance program planned to enhance situation awareness during the event. In preparation, we sought to examine syndrome performance of several newly developed chief complaint and combination chief complaint and diagnosis code syndrome definitions to aid in interpretation of syndromic surveillance data during the event.IntroductionThe August 21, 2017 total solar eclipse in Idaho was anticipated to lead to a large influx of visitors in many communities, prompting a widespread effort to assure Idaho was prepared. To support these efforts, the Idaho Syndromic Surveillance program (ISSp) developed a plan to enhance situation awareness during the event by conducting syndromic surveillance using emergency department (ED) visit data contributed to the National Syndromic Surveillance Program’s BioSense platform by Idaho hospitals. ISSp sought input on anticipated threats from state and local emergency management and public health partners, and selected 8 syndromes for surveillance.Ideally, the first electronic message containing information on an emergency department visit is sent to ISSp within 24 hours of the visit and includes the chief complaint for the visit. Data on other variables, such as diagnosis codes, are updated by subsequent messages for several days after the visit. Chief complaint (CC) text and discharge diagnosis (DD) codes are the primary variables used for syndrome match; delay in reporting these variables adversely affects timely syndrome match of visits. Because our plan included development of new syndrome definitions and querying data within 24 hours of visits, earlier than ISSp had done previously for trend analysis, we sought to better understand syndrome performance.MethodsWe defined messages with completed CC and DD as the last message regarding a visit where term count increased from previous messages regarding that visit, indicating new information was added to the field. We retrospectively assessed the total number of ED visits and calculated the daily frequency of completed CC and DD by days since visit date for visits during June 1–July 31, 2017. Additionally, we calculated facility mean word count in CC fields by averaging the word count of parsed, complete CC fields for visits occurring June 1–July 31, 2017 for each facility.During July 10–24, 2017, we calculated the daily frequency of visits occurring in the previous 90 days for total ED visits and syndrome-matched visits for 8 selected syndromes (heat-related illness; cold exposure; influenza-like-illness; nausea, vomiting, and diarrhea; animal/bug bites and stings; drowning/submersion; alcohol/drug intoxication; and medication replacement). Syndrome-matched visits were defined as visits with CC or DD that match the syndrome definition. We calculated the percent of syndrome-matched visits by syndromes defined with CC or CC and DD combined (CCDD) over time. Syndromes with fewer than 5 matched visits were excluded from analysis.ResultsComplete CCs were received for 99.1% of visits and complete DDs were received for 89.8% of visits. Complete CCs were submitted for 58.2% of visits within 1 day of the visit, 88.9% of visits within 3 days, and 98.9% of visits within 7 days. In contrast, complete DDs were submitted for 24.3% of visits within 1 day, 38.7% of visits within 3 days, and 53.7% of visits within 7 days (Table 1).During the observation period, data submission from facilities representing approximately 33% of visits was interrupted for 5 (36%) of 14 days. Heat-related illness, cold exposure, and drowning/submersion, were excluded from syndrome-match analysis. During the 9 days of uninterrupted data submission, 100% syndrome-matched visits for syndromes defined by CC alone and 69.1% syndrome-matched visits for syndromes defined by CCDD were identified within 6–7 days of initial visit. Facilities with interrupted data submission contributed 75% of CC syndrome-matched visits and 33% of CCDD syndrome-matched visits. The facility mean word count in CC fields from these facilities was >15 compared with 2–4 from other facilities.ConclusionsExamination of syndrome performance prior to a known event quantitated differences in timeliness of CC and DD completeness and syndrome match. CCs and DDs in visit messages were not complete within 24 hours of initial visit. CC completion was nearly 34 percentage points greater than DD completeness 1 day after initial visit and did not converge until ≥15 days after initial visit. Higher percentages of syndrome match within 6–7 days of initial visit were seen by CC alone than CCDD defined syndromes. Facilities using longer CCs contributed disproportionately to syndrome matching using CC, but not CCDD syndrome definitions. Syndromic surveillance system characteristics, including timeliness of CCs and DDs, length of CCs, and characteristics of facilities from which data transmission is interrupted should be considered when building syndrome definitions that will be used for surveillance within 7 days of emergency department visits and when interpreting syndromic surveillance findings.


2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Zachary M. Stein ◽  
Sophia Crossen

ObjectiveTo compare and contrast two ESSENCE syndrome definition query methods and establish best practices for syndrome definition creation.IntroductionThe Kansas Syndromic Surveillance Program (KSSP) utilizes the ESSENCE v.1.20 program provided by the National Syndromic Surveillance Program to view and analyze Kansas Emergency Department (ED) data.Methods that allow an ESSENCE user to query both the Discharge Diagnosis (DD) and Chief Complaint (CC) fields simultaneously allow for more specific and accurate syndromic surveillance definitions. As ESSENCE use increases, two common methodologies have been developed for querying the data in this way.The first is a query of the field named “CC and DD.” The CC and DD field contains a concatenation of the parsed patient chief complaint and the discharge diagnosis. The discharge diagnosis consists of the last non-null value for that patient visit ID and the chief complaint parsed is the first non-null chief complaint value for that patient visit ID that is parsed by the ESSENCE platform. For this comparison, this method shall be called the CCDD method.The second method involves a query of the fields named, “Chief Complaint History” and “Discharge Diagnosis History.” While the first requires only one field be queried, this method queries the CC History and DD History fields, combines the resulting data and de-duplicates this final data set by the C_BioSense_ID. Chief Complaint History is a list of all chief complaint values related to a singular ED visit, and Discharge Diagnosis History is the same concept, except involving all Discharge Diagnosis values. For this comparison, this method shall be called the CCDDHX method.While both methods are based on the same query concept, each method can yield different results.MethodsA program was created in R Studio to analyze a user-provided query.Simple queries were randomly generated. Twenty randomly generated queries were run through the R Studio program and disparities between data sets were recorded. All KSSP production facility ED visits during the month of August 2017 were analyzed.Secondly, three queries actively utilized in KSSP practice were run through the program. These queries were Firework-Related Injuries, Frostbite and Cold Exposure, and Rabies Exposure. The queries were run on all KSSP production facility ED visits, and coincided with the timeline of relevant exposures.ResultsIn the random query trials, an average of 5.4% of the cases captured using the CCDD field method were unique and not captured by the same query in the CCDDHX method. Using the CCDDHX method, an average of 6.1% of the cases captured were unique and not captured by the CCDD method.When using the program to compare syndromes from actively utilized KSSP practice, the disparity between the two methods was much lower.Firework-Related InjuriesDuring the time period queried, the CCDD method returned 171 cases and the CCDDHX method returned 169 cases. All CCDDHX method cases were captured by the CCDD method. The CCDD method returned 2 cases not captured by the CCDDHX method. These two cases were confirmed as true positive firework-related injury cases.Frostbite and Cold ExposureDuring the time period queried, CCDD method returned 328 cases and the CCDDHX method returned 344 cases. The CCDDHX method captured 16 cases that the CCDD method did not. The CCDD method did not capture any additional cases when compared to the CCDDHX method. After review, 10 (62.5%) of these 16 cases not captured by the CCDD method were true positive cases.Rabies ExposureDuring the time period queried, the CCDD method returned 474 cases and the CCDDHX method returned 473 cases. The CCDDHX method captured 7 cases that the CCDD method did not. The CCDD method returned 8 cases not captured by the CCDDHX method. After review, the 7 unique cases captured in the CCDDHX method contained 3 (42.9%) true positive cases and 3 (37.5%) of the 8 cases not captured by the CCDDHX method were true positives.ConclusionsThe twenty random queries showed a disparity between methods. When utilizing the same program to analyze three actively utilized KSSP definitions, both methods yielded similar results with a much smaller disparity. The CCDDHX method inherently requires more steps and requires more queries to be run through ESSENCE, making the method less timely and more difficult to share. Despite these downsides, CCDDHX will capture cases that appear throughout the history of field updates.Further variance between methods is likely due to the CCDD field utilizing the ESSENCE-processed CC while the CCDDHX field utilizes the CC verbatim as produced by the ED facility. This allows the CCDD method to tap into the powerful spelling correction and abbreviation-parsing steps that ESSENCE employs, but incorrect machine corrections and replacements, while rare, can negatively affect syndrome definition performance.The greater disparity in methods for the random queries may be due to the short (3 letter) text portion of the queries. Short segments are more likely to be found in multiple words than text of actual queries. Utilizing larger randomly generated text segments may resolve this and is a planned next step for this research.Our next step is to share the R Studio program to allow further replication. The Kansas Syndromic Surveillance Program is also continuing similar research to ensure that best practices are being met. 


2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Zachary M Stein

ObjectiveTo develop a syndrome definition and analyze syndromic surveillance data usefulness in surveillance of firework-related emergency department visits in Kansas. Introduction Across the U.S.A., multiple people seek treatment for fireworks-related injuries around the July 4th holiday. Syndromic surveillance in Kansas allows for near real-time analysis of the injuries occurring during the firework selling season. During the 2017 July 4thholiday, the Kansas Syndromic Surveillance Program (KSSP) production data feed received data from 88 EDs at excellent quality and timeliness. Previous and current firework safety messaging in Kansas is dependent on voluntary reporting from hospitals across the state. With widespread coverage of EDs by KSSP, data can be more complete and timely to better drive analysis and public information Methods:KSSP data was queried through the Electronic Surveillance System for the Early Notification of Community-based Epidemics (ESSENCE) v.1.20 provided by the National Syndromic Surveillance Program. Data between June 12, 2017 and August 13, 2017 were queried. The first query (Query A, Table 1.) searched the Discharge Diagnosis History field for the “W39” ICD-10 Diagnosis code, “Discharge of firework.” These records were searched for common firework terms contained in the Chief Complaint History field. These firework-related free text terms (Query B, Table 1.) were then combined with other potential firework-related terms to create a preliminary free text query (Query C, Table 1.). This preliminary query was run on the Chief Complaint History field. Data were then searched for false positive cases and appropriate negation terms were included to accommodate this. The new query with negation terms (Query D, Table 1.) was run on the Chief Complaint History field, combined with the results from the Discharge Diagnosis History field, and then combined records were de-duplicated based on a unique visit identifier. The final data set was then classified by the anatomical location of the injury and the gender and age group of the patient. Results:The initial query (Query A, Table 1.) for the diagnosis code “W39” returned 101 unique ED visits. Of these 101 unique ED visits, the following terms were identified in the Chief Complaint History field: shell, artillery, bomb, sparkler, grenade, fire cracker, firework, and firework show. These key terms were translated into Query B, Table 1. Other key terms deemed likely to capture specific firework-related exposures were then included into Query C, Table 1. , including roman, candle, lighter, M80, and punk. Query C was then used to query the Chief Complaint History field, returning 144 unique ED visits. Cases captured by Query C were then reviewed by hand for false positives and the negation terms, lighter fluid, fish, nut, and pistachio, were incorporated the Query D, Table 1. The previous process for Query C was then repeated on Query D, leaving a remaining 136 unique cases. Query A’s 101 unique ED visits was then combined with the 136 unique ED visits captured by Query D and de-duplicated. The de-duplicated data set contained 170 unique ED visits which were then reviewed by hand for false positives. The final removal of false positives from the combined and de-duplicated data set left a remaining 154 unique ED visits for firework-related injuries during this time period.For these data, the most common victims of firework injuries were males, accounting for 65.5% of all firework related ED visits and children ages 0 to 19 accounting for 44.2% of these visits. At every age breakout, male injuries exceeded female injuries. The most common anatomical location of the injury was one or both hands with 38.3% of all injuries mentioned hands as their primary injury. Injuries to the eyes, face, and head accounted for the second most injuries (28.6% of all patients). Conclusions: The selling of fireworks will be a yearly occurrence of a specific exposure that can potentially lead to injuries. Utilizing syndromic surveillance to review the holiday firework injuries is a very rapid method to assess the impact of these injuries and may allow for future direction of public information during the holiday. Having a syndrome definition that builds on knowledge from previous years will allow for quicker case identification as well.State public information regarding firework safety can be significantly bolstered by accurate and rapid data assessment. Developing a firework injury syndrome definition that is accurate and returns information rapidly has allowed for increased buy-in to the Kansas Syndromic Surveillance Program from public information offices, fire marshal’s offices, and other program fields.


2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Andrew Torgerson

ObjectiveTo describe a novel application of ESSENCE by the Saint Louis County Department of Public Health (DPH) in preparation for a mass gathering and to encourage discussion about the appropriateness of sharing syndromic surveillance data with law enforcement partners.IntroductionIn preparation for mass gathering events, DPH conducts enhanced syndromic surveillance activities to detect potential cases of anthrax, tularemia, plague, and other potentially bioterrorism-related communicable diseases. While preparing for Saint Louis to host a Presidential Debate on October 9, 2016, DPH was asked by a partner organization whether we could also detect emergency department (ED) visits for injuries (e.g., burns to the hands or forearms) that could possibly indicate bomb-making activities.MethodsUsing the Electronic Surveillance System for the Notification of Community-Based Epidemics (ESSENCE), version 1.9, DPH developed a simple query to detect visits to EDs in Saint Louis City or Saint Louis County with chief complaints including the word “burn” and either “hand” or “arm.” A DPH epidemiologist reviewed the results of the query daily for two weeks before and after the debate (i.e., from September 25, 2016 to October 23, 2016). If any single ED visit was thought to be “suspicious” – if, for example, the chief complaint mentioned an explosive or chemical mechanism of injury – then DPH would contact the ED for details and relay the resulting information to the county’s Emergency Operations Center.ResultsDuring the 29 day surveillance period, ESSENCE detected 27 ED visits related to arm or hand burns. The ESSENCE query returned a median of 1 ED visit per day (IQR 0 to 2 visits). Of these, one was deemed to merit further investigation – two days before the debate, a patient presented to an ED in Saint Louis County complaining of a burned hand. The patient’s chief complaint data also mentioned “explosion of unspecified explosive materials.” Upon investigation, DPH learned that the patient had been injured by a homemade sparkler bomb. Subsequently, law enforcement determined that the sparkler bomb had been made without any malicious intent.ConclusionsDPH succeeded in using ESSENCE to detect injuries related to bomb-making. However, this application of ESSENCE differs in at least two ways from more traditional uses of syndromic surveillance. First, conventional syndromic surveillance is designed to detect trends in ED visits resulting from an outbreak already in progress or a bioterrorist attack already carried out. In this case, syndromic surveillance was used to detect a single event that could be a prelude to an attack. The potential to prevent widespread injury or illness is a strength of this approach. Second, conventional syndromic surveillance identifies potential outbreak cases or, in the case of a bioterrorist attack, potential victims. In this case, syndromic surveillance was used to identify a potential perpetrator of an attack. While public health and law enforcement agencies would ideally coordinate their investigative efforts in the wake of an attack, this practice has led to conversations within DPH about the appropriateness of routinely sharing public health surveillance data with law enforcement. 


2017 ◽  
Vol 132 (1_suppl) ◽  
pp. 31S-39S ◽  
Author(s):  
Jessica R. White ◽  
Vjollca Berisha ◽  
Kathryn Lane ◽  
Henri Ménager ◽  
Aaron Gettel ◽  
...  

Objectives: We evaluated a novel syndromic surveillance query, developed by the Council of State and Territorial Epidemiologists (CSTE) Heat Syndrome Workgroup, for identifying heat-related illness cases in near real time, using emergency department and inpatient hospital data from Maricopa County, Arizona, in 2015. Methods: The Maricopa County Department of Public Health applied 2 queries for heat-related illness to area hospital data transmitted to the National Syndromic Surveillance Program BioSense Platform: the BioSense “heat, excessive” query and the novel CSTE query. We reviewed the line lists generated by each query and used the diagnosis code and chief complaint text fields to find probable cases of heat-related illness. For each query, we calculated positive predictive values (PPVs) for heat-related illness. Results: The CSTE query identified 674 records, of which 591 were categorized as probable heat-related illness, demonstrating a PPV of 88% for heat-related illness. The BioSense query identified 791 patient records, of which 589 were probable heat-related illness, demonstrating a PPV of 74% for heat-related illness. The PPV was substantially higher for the CSTE novel and BioSense queries during the heat season (May 1 to September 30; 92% and 85%, respectively) than during the cooler seasons (55% and 29%, respectively). Conclusion: A novel query for heat-related illness that combined diagnosis codes, chief complaint text terms, and exclusion criteria had a high PPV for heat-related illness, particularly during the heat season. Public health departments can use this query to meet local needs; however, use of this novel query to substantially improve public health heat-related illness prevention remains to be seen.


Author(s):  
Adrian Soto-Mota ◽  
Braulio A. Marfil-Garza ◽  
Erick Martínez Rodríguez ◽  
José Omar Barreto Rodríguez ◽  
Alicia Estela López Romo ◽  
...  

ABSTRACT- ImportanceMany COVID-19 prognostic factors for disease severity have been identified and many scores have already been proposed to predict death and other outcomes. However, hospitals in developing countries often cannot measure some of the variables that have been reported as useful.- ObjectiveTo assess the sensitivity, specificity, and predictive values of the novel LOW-HARM score (Lymphopenia, Oxygen saturation, White blood cells, Hypertension, Age, Renal injury, and Myocardial injury).- DesignThe score was designed using data from already published cohorts of patients diagnosed with COVID-19. Afterwards, it was calculated it in 438 consecutive hospital admissions at twelve different institutions in ten different cities in Mexico.- SettingTwelve hospitals in ten different cities in Mexico.- ParticipantsData from 438 patients was collected. Data from 400 patients (200 deaths and 200 survivors) was included in the analysis.- ExposureAll patients had an infection with SARS-CoV-2 confirmed by PCR.- Main OutcomeThe sensitivity, specificity, and predictive values of different cut-offs of the LOW-HARM score to predict death.- ResultsMean scores at admission and their distributions were significantly lower in patients who were discharged compared to those who died during their hospitalization 10 (SD: 17) vs 70 (SD: 28). The overall AUC of the model was 95%. A cut-off > 65 points had a specificity of 98% and a positive predictive value of 96%. More than a third of the cases (36%) in the sample had a LOW-HARM score > 65 points.- Conclusions and relevanceThe LOW-HARM score measured at admission is highly specific and useful for predicting mortality. It is easy to calculate and can be updated with individual clinical progression.KEY POINTSQuestionIs it possible to predict mortality in patients diagnosed with COVID-19 using easy-to-access and easy-to-measure variables?FindingsThe LOW-HARM score (Lymphopenia, Oxygen saturation, White blood cells, Hypertension, Age, Renal injury, and Myocardial injury) is a one-hundred-point score that, when measured at admission, had an overall AUC of 95% for predicting mortality. A cut-off of ≥ 65 points had a specificity of 98% and a positive predictive value of 96%.MeaningThe LOW-HARM score measured at admission is highly specific and useful for predicting mortality in patients diagnosed with COVID-19. In our sample, more than a third of patients met the proposed cut-off.


2020 ◽  
Vol 37 (7) ◽  
pp. 417-422
Author(s):  
Erica E M Lee ◽  
Edmund S H Kwok ◽  
Christian Vaillancourt

BackgroundIn many EDs, emergency physicians (EPs) do not have admitting privileges and must wait for consultants to further assess and admit patients. This delays bed requests and increases ED crowding. We measured EPs’ abilities to predict patient admission prior to consultation and estimated the potential ED stretcher time saved if EPs requested a bed with consultation.MethodsWe conducted a prospective cohort study in an academic centre in Canada between October 2017 and February 2018 using a convenience sample of ED patient encounters requiring consultation. We excluded patients under 18 years or those clearly likely to be admitted (traumas, strokes, S-T elevation myocardial infarctions and Canadian Triage and Acuity Scale of 1). EPs predicted patient admission just before consultation. Potential ED stretcher time saved was estimated for correctly predicted admissions assuming bed requests were initiated with consultation and a constant time to inpatient bed.ResultsCharacteristics of 454 patients were: mean age 60.1 years, 48.5% male, 46.9% evening presentation, 69.4% admitted and median time to bed request of 3.5 hours (IQR 2.0–5.3 hours). Overall, EPs prediction sensitivity, specificity, positive predictive value and negative predictive value were 90.5% (95% CI 86.7% to 93.5%), 84.2% (95% CI 77.0% to 89.8%), 92.8% (95% CI 89.8% to 95.0%) and 79.6% (95% CI 73.4% to 84.7%). Approximately 922.1 hours of ED stretcher time could have been saved during the 5-month study period if EPs initiated a bed request with consultation.ConclusionCrowding is a reality for EDs worldwide, and many systems could benefit from EP-initiated hospital admissions to decrease the amount of time admitted patients wait in the ED.


2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Pinar Erdogdu ◽  
Barbara Carothers ◽  
Rebecca Greeley ◽  
Stella Tsai

Objective: Medical notes provide a rich source of information that can be used as additional supporting information for healthcare-associated infection (HAI) investigations. The medical notes from 10 New Jersey (NJ) emergency departments (ED) were searched to identify cases of surgical-site infections (SSI).Introduction: EpiCenter, NJ’s statewide syndromic surveillance system, collects ED registration data. The system uses chief complaint data to classify ED visits into syndrome categories and provides alerts to state and local health departments for surveillance anomalies.After the 2014 Ebola outbreak in West Africa, the New Jersey Department of Health (NJDOH) started collecting medical notes including triage notes, which contain more specific ED visit information than chief complaint, from 10 EDs to strengthen HAI syndromic surveillance efforts.In 2017, the NJDOH was aware of one NJ resident whose surgical site was infected following a cosmetic procedure outside of the US. This event triggered an intensive data mining using medical notes collected in EpiCenter. The NJDOH staff searched one week of medical notes data in EpiCenter with a specific keyword to identify additional potential cases of surgical-site infections (SSI) that could be associated with medical tourism.Methods: The NJ resident whose surgical site was infected following a cosmetic procedure outside of the US was interviewed by NJDOH staff for details about their procedure. First, the patient’s interview results were reviewed to prepare a set of SSI and travel related keywords to be used in performing data mining in medical notes collected in EpiCenter. The interviewed patient had tummy tuck and liposuction surgeries; therefore, it was decided to search for “tummy tuck” as a keyword in EpiCenter. The medical notes from August 31, 2017 through September 8, 2017 were reviewed to identify patients who developed SSI following a cosmetic procedure outside of the US.Results: The search yielded 8 ED visits, one of which was identified as possible surgical site infection. The medical notes details indicated that the ED patient, a 21-year old female who had abdominoplasty (tummy tuck) and liposuction surgeries about a month prior, presented with post-surgical complaints such as pain, surgical dehiscence, and purulent drainage at the surgery site. Chief complaint text for the same ED patient indicated the patient had headache and dizziness which were less specific than medical notes.The NJDOH staff contacted the ED to obtain additional information regarding the infection. The lab results from the ED showed that the patient was identified as having a post-surgery infection, which prompted public health to follow-up whether it was an HAI.Conclusions: The limitation for this project was that the keyword search was conducted only on one week of data. The timeframe was kept short to pilot testing the keyword identified. The Centers for Disease Control and Prevention suggests clinicians should consider nontuberculous mycobacteria (NTM) infections in the differential diagnosis for all people who have wound infections after surgery abroad, including surgery that has occurred weeks to months previously (1). Future studies will explore larger data sets with additional keywords (e.g. country and organism) to see if potential cases can be identified as possible HAI and/or outbreak that will lead to public health investigations.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Achintya N. Dey ◽  
Michael Coletta ◽  
Hong Zhou ◽  
Nelson Adekoya ◽  
Deborah Gould

ObjectiveEmergency department (ED) visits related to mental health (MH) disorders have increased since 2006 (1), indicating a potential burden on the healthcare delivery system. Surveillance systems has been developed to identify and understand these changing trends in how EDs are used and to characterize populations seeking care. Many state and local health departments are using syndromic surveillance to monitor MH-related ED visits in near real-time. This presentation describes how queries can be created and customized to identify select MH sub-indicators (for adults) by using chief complaint text terms and diagnoses codes. The MH sub-indicators examined are mood and depressive disorders, schizophrenic disorders, and anxiety disorders. Wider adoption of syndromic surveillance for characterizing MH disorders can support long-term planning for healthcare resources and service delivery.IntroductionSyndromic surveillance systems, although initially developed in response to bioterrorist threats, are increasingly being used at the local, state, and national level to support early identification of infectious disease and other emerging threats to public health. To facilitate detection, one of the goals of CDC’s National Syndromic Surveillance Program (NSSP) is to develop and share new sets of syndrome codes with the syndromic surveillance Community of Practice. Before analysts, epidemiologists, and other practitioners begin customizing queries to meet local needs, especially monitoring ED visits in near-real time during public health emergencies, they need to understand how syndromes are developed.More than 4,000 hospital routinely send data to NSSP’s BioSense Platform, representing about 55 percent of ED visits in the United States (2). The platform’s surveillance component, ESSENCE,* is a web-based application for analyzing and visualizing prediagnostic hospital ED data. ESSENCE’s Chief Complaint Query Validation (CCQV) data source, which is a national-level data source with access to chief complaint (CC) and discharge diagnoses (DD) from reporting sites, was designed for testing new queries.MethodsWe used ESSENCE CCQV to query weekly data for the nine week period from the first quarter of 2018 and looked at three common MH sub-indicators: mood and depressive disorders, schizophrenic disorders, and anxiety disorders. We developed four query types for each MH sub-indicator. Query-1 focused on DD codes; query-2 focused on CC text terms; query-3 focused on a combination of CC, DD, and no exclusion for mental health co-morbidity; and query-4 focused on a combination of CC and DD and excluded mental health co-morbidity. We also examined the summary distribution of CC texts to identify keywords related to MH sub-indicators.For mood and depressive disorders, we queried ICD-9 codes 296, 311; ICD-10 codes F30–F39; CC text terms for words “depressive disorder,” bipolar disorder,” “mood disorder,” “depression,” “manic episodes,” and “psychotic.” For schizophrenic disorders, we queried ICD-9 codes 295; ICD-10 codes F20–F29; CC text terms for words “psychosis,” “psychotic,” “schizo,” “delusional,” “paranoid,” “auditory,” “hallucinations,” and “hearing voices.” For anxiety disorders, we queried ICD-9 codes 300, 306, 307, 308, 309; ICD-10 codes F40–F48; CC text terms for words “anxiety,” “anexiy,” “aniety,” “aniexty,” “ansiety,” “anxety,” “anxity,” “anxiety,” “phobia,” and “panic attack.”ResultsWe identified 2.3 million average weekly ED visits for the 9-week period queried. Table 1 shows average weekly ED visits of select MH sub-indicators from the four query types. Because query 4 focused on specific MH outcomes and excluded MH co-morbidities, the average weekly ED visit for all three sub-indicators was almost half that of query 3, which focused on broader concepts by including MH co-morbidities. Among mood and depressive disorders, query 4 identified on average 23,352 ED visits per week versus 45,504 visits per week for query 3. Similarly, for schizophrenic disorders and anxiety disorders, query 4 identified on average 4,988 and 32,790 visits per week compared with 9,816 and 53,868 visits, respectively, for query 3. Further, more MH-related visits were identified using the DD-coded query (query 1) than CC-based text terms (query 2).ConclusionsAnalysts can benefit from having queries on select sub-indicators readily available and can use these to facilitate routine MH-related monitoring of ED visits, or customize the queries by including local text terms. Consistent with our previous work (3), this analysis demonstrated that MH-related ED visits are more likely to be found in DD codes than in CC alone.* Electronic Surveillance for the Early Notification of Community-based EpidemicsReferences[1] Weiss AJ, Barrett ML, Heslin KC , Stocks C. Trends in Emergency Department Visits Involving Mental and Substance Use Disorders, 2006–2013. HCUP Statistical Brief #216 [Internet]. Rockville (MD): Agency for Healthcare Research and Quality; 2016 Dec [cited 2018 Aug 14]. Available from: http://www.hcup-us.ahrq.gov/reports/statbriefs/sb216-Mental-Substance-Use-Disorder-ED-Visit-Trends.pdf.[2] Gould DW, Walker D, Yoon PW. The Evolution of BioSense: Lessons Learned and Future Directions. Public Health Reports. 2017 Jul/Aug;132(Suppl 1):S7–S11.[3] Dey AN, Gould D, Adekoya N, Hicks P, Ejigu GS, English R, Couse J, Zhou H. Use of Diagnosis Code in Mental Health Syndrome Definition. Online Journal of Public Health Informatics [Internet]. 2018 [cited 2018 Aug 14];10(1). Available from: https://doi.org/10.5210/ojphi.v10i1.8983


Sign in / Sign up

Export Citation Format

Share Document