scholarly journals Comparison between the Holt-Winters and SARIMA Models in the Prediction of NDVI in an Arid Region in Kenya using Pixel-wise NDVI Time Series

2021 ◽  
Vol 2 (23) ◽  
pp. 1-15
Author(s):  
Mwana Said Omar ◽  
◽  
Hajime Kawamukai

Desertification is major issue in arid and semi-arid lands (ASAL) with devastating environmental and socio-economic impacts. Time series analysis was applied on 19 years’ pixel-wise monthly mean Normalized Difference Vegetation Index (NDVI) data. The aim of this study was to identify a time series model that can be used to predict NDVI at the pixel level in an arid region in Kenya. The Holt-Winters and Seasonal Auto Regressive Integrated Moving Average (SARIMA) models were developed and statistical analysis was carried out using both models on the study area. We performed a grid search to optimise and determine the best hyper parameters for the models. Results from the grid search identified the Holt-Winters model as an additive model and a SARIMA model with a trend autoregressive (AR) order of 1, a trend moving average (MA) order of 1 and a seasonal MA order of 2, with both models having a seasonal period of 12 months. It was concluded that the Holt-Winters model showed the best performance for 600 ✕ 600 pixels (MAE = 0.0744, RMSE = 0.096) compared to the SARIMA model.

2012 ◽  
Vol 4 (5) ◽  
pp. 897 ◽  
Author(s):  
Luana Portz ◽  
Laurindo Antonio Guasselli ◽  
Iran Carlos Stalliviere Corrêa

Neste estudo foram analisadas as variações espaciais e temporais do Índice de Vegetação por Diferença Normalizada (NDVI) na lagoa do Peixe, no litoral do Rio Grande do Sul. Para alcançar o objetivo proposto foram utilizadas imagens de satélite Landsat TM5, entre os anos de 1986 e 2009, seguindo os procedimentos de elaboração de mosaico das cenas, verificação de campo, geração das imagens de NDVI, análise de dados de precipitação acumulada, geração dos mapas finais e análise qualitativa dos resultados obtidos. Os resultados obtidos com a geração de imagens de NDVI mostraram que a análise espaço-temporal associada aos dados de precipitação fornecem informações de valiosa importância sobre a dinâmica da lagoa do Peixe. A importância  do NDVI neste estudo se destaca pelo contraste existente entre água e vegetação, realçando os diferentes níveis de água sobre os bancos vegetados presentes na borda oeste da lagoa. Estes bancos são um importante controlador da dinâmica de circulação lagunar, onde em períodos de seca ocorre a compartimentação da lagoa, enquanto que em épocas de grande precipitação e acumulação de água estes bancos ficam submersos. Palavras-chave: Landsat TM, série temporal, Parque Nacional.  Spatial and Temporal Variation of NDVI in the Peixe Lagoon, RS  ABSTRACTThis paper analyzed the spatial and temporal variation of Normalized Difference Vegetation Index (NDVI) in the Peixe lagoon. To reach the purpose,  the NDVI time-series were collected from the study area between year 1986 and 2009 derived from Landsat TM5 satellite. The adopted methodology may be subdivided into the following steps: mosaic of scenes, fild verification, generation of NDVI time-series and qualitative analysis, in addition, it was complemented with rainfall analysis.  The results obtained with the NDVI time-series associated with the rainfall analysis data provide valuable information about the environmental dynamics. The importance of NDVI in this work is given by the contrast between water and vegetation, highlighting the different levels of water over vegetated banks present on the western edge of the lagoon. These banks are an important driver circulation in the lagoon, where in periods of drought occurs the partitioning of the lagoo, while in periods of high precipitation and accumulation of water they are submerged.    Keywords: Landsat TM, time-series, National Park.


2020 ◽  
Vol 12 (14) ◽  
pp. 2195 ◽  
Author(s):  
Blanka Vajsová ◽  
Dominique Fasbender ◽  
Csaba Wirnhardt ◽  
Slavko Lemajic ◽  
Wim Devos

The availability of large amounts of Sentinel-2 data has been a trigger for its increasing exploitation in various types of applications. It is, therefore, of importance to understand the limits above which these data still guarantee a meaningful outcome. This paper proposes a new method to quantify and specify restrictions of the Sentinel-2 imagery in the context of checks by monitoring, a newly introduced control approach within the European Common Agriculture Policy framework. The method consists of a comparison of normalized difference vegetation index (NDVI) time series constructed from data of different spatial resolution to estimate the performance and limits of the coarser one. Using similarity assessment of Sentinel-2 (10 m pixel size) and PlanetScope (3 m pixel size) NDVI time series, it was estimated that for 10% out of 867 fields less than 0.5 ha in size, Sentinel-2 data did not provide reliable evidence of the activity or state of the agriculture field over a given timeframe. Statistical analysis revealed that the number of clean or full pixels and the proportion of pixels lost after an application of a 5-m (1/2 pixel) negative buffer are the geospatial parameters of the field that have the highest influence on the ability of the Sentinel-2 data to qualify the field’s state in time. We specified the following limiting criteria: at least 8 full pixels inside a border and less than 60% of pixels lost. It was concluded that compliance with the criteria still assures a high level of extracted information reliability. Our research proved the promising potential, which was higher than anticipated, of Sentinel-2 data for the continuous state assessment of small fields. The method could be applied to other sensors and indicators.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4834 ◽  
Author(s):  
Pengyu Hao ◽  
Mingquan Wu ◽  
Zheng Niu ◽  
Li Wang ◽  
Yulin Zhan

Timely and accurate crop type distribution maps are an important inputs for crop yield estimation and production forecasting as multi-temporal images can observe phenological differences among crops. Therefore, time series remote sensing data are essential for crop type mapping, and image composition has commonly been used to improve the quality of the image time series. However, the optimal composition period is unclear as long composition periods (such as compositions lasting half a year) are less informative and short composition periods lead to information redundancy and missing pixels. In this study, we initially acquired daily 30 m Normalized Difference Vegetation Index (NDVI) time series by fusing MODIS, Landsat, Gaofen and Huanjing (HJ) NDVI, and then composited the NDVI time series using four strategies (daily, 8-day, 16-day, and 32-day). We used Random Forest to identify crop types and evaluated the classification performances of the NDVI time series generated from four composition strategies in two studies regions from Xinjiang, China. Results indicated that crop classification performance improved as crop separabilities and classification accuracies increased, and classification uncertainties dropped in the green-up stage of the crops. When using daily NDVI time series, overall accuracies saturated at 113-day and 116-day in Bole and Luntai, and the saturated overall accuracies (OAs) were 86.13% and 91.89%, respectively. Cotton could be identified 40∼60 days and 35∼45 days earlier than the harvest in Bole and Luntai when using daily, 8-day and 16-day composition NDVI time series since both producer’s accuracies (PAs) and user’s accuracies (UAs) were higher than 85%. Among the four compositions, the daily NDVI time series generated the highest classification accuracies. Although the 8-day, 16-day and 32-day compositions had similar saturated overall accuracies (around 85% in Bole and 83% in Luntai), the 8-day and 16-day compositions achieved these accuracies around 155-day in Bole and 133-day in Luntai, which were earlier than the 32-day composition (170-day in both Bole and Luntai). Therefore, when the daily NDVI time series cannot be acquired, the 16-day composition is recommended in this study.


2019 ◽  
Vol 11 (21) ◽  
pp. 2497
Author(s):  
Laura Recuero ◽  
Javier Litago ◽  
Jorge E. Pinzón ◽  
Margarita Huesca ◽  
Maria C. Moyano ◽  
...  

Vegetation seasonality assessment through remote sensing data is crucial to understand ecosystem responses to climatic variations and human activities at large-scales. Whereas the study of the timing of phenological events showed significant advances, their recurrence patterns at different periodicities has not been widely study, especially at global scale. In this work, we describe vegetation oscillations by a novel quantitative approach based on the spectral analysis of Normalized Difference Vegetation Index (NDVI) time series. A new set of global periodicity indicators permitted to identify different seasonal patterns regarding the intra-annual cycles (the number, amplitude, and stability) and to evaluate the existence of pluri-annual cycles, even in those regions with noisy or low NDVI. Most of vegetated land surface (93.18%) showed one intra-annual cycle whereas double and triple cycles were found in 5.58% of the land surface, mainly in tropical and arid regions along with agricultural areas. In only 1.24% of the pixels, the seasonality was not statistically significant. The highest values of amplitude and stability were found at high latitudes in the northern hemisphere whereas lowest values corresponded to tropical and arid regions, with the latter showing more pluri-annual cycles. The indicator maps compiled in this work provide highly relevant and practical information to advance in assessing global vegetation dynamics in the context of global change.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Long Zhao ◽  
Pan Zhang ◽  
Xiaoyi Ma ◽  
Zhuokun Pan

A timely and accurate understanding of land cover change has great significance in management of area resources. To explore the application of a daily normalized difference vegetation index (NDVI) time series in land cover classification, the present study used HJ-1 data to derive a daily NDVI time series by pretreatment. Different classifiers were then applied to classify the daily NDVI time series. Finally, the daily NDVI time series were classified based on multiclassifier combination. The results indicate that support vector machine (SVM), spectral angle mapper, and classification and regression tree classifiers can be used to classify daily NDVI time series, with SVM providing the optimal classification. The classifiers of K-means and Mahalanobis distance are not suited for classification because of their classification accuracy and mechanism, respectively. This study proposes a method of dimensionality reduction based on the statistical features of daily NDVI time series for classification. The method can be applied to land resource information extraction. In addition, an improved multiclassifier combination is proposed. The classification results indicate that the improved multiclassifier combination is superior to different single classifier combinations, particularly regarding subclassifiers with greater differences.


2018 ◽  
pp. 19 ◽  
Author(s):  
Y. Julien ◽  
J. A. Sobrino

<p>This paper introduces the Time Series Simulation for Benchmarking of Reconstruction Techniques (TISSBERT) dataset, intended to provide a benchmark for the validation and comparison of time series reconstruction methods. Such methods are routinely used to estimate vegetation characteristics from optical remotely sensed data, where the presence of clouds decreases the usefulness of the data. As for their validation, these methods have been compared with previously published ones, although with different approaches, which sometimes lead to contradictory results. We designed the TISSBERT dataset to be generic so that it could simulate realistic reference and cloud-contaminated time series at global scale. To that end, we estimated both cloud-free and cloud-contaminated Normalized Difference Vegetation Index (NDVI) statistics for randomly selected control points and each day of the year from the Long Term Data Record Version 4 (LTDR-V4) dataset by assuming different statistical distributions. The best approach was then applied to the whole dataset, and validity of the results were estimated through the Kolmogorov-Smirnov statistic. The dataset elaboration is described thoroughly along with how to use it. The advantages and drawbacks of this dataset are then discussed, which emphasize the realistic simulation of the cloud-contaminated and reference time series. This dataset can be obtained from the authors upon demand. It will be used in a next paper to compare widely used NDVI time series reconstruction methods.</p>


2020 ◽  
Vol 12 (20) ◽  
pp. 3371
Author(s):  
Jiani Ma ◽  
Chao Zhang ◽  
Hao Guo ◽  
Wanling Chen ◽  
Wenju Yun ◽  
...  

Identifying ecologically vulnerable areas and understanding the responses of phenology to negative changes in vegetation growth are important bases for ecological restoration. However, identifying ecologically vulnerable areas is difficult because it requires high spatial resolution and dense temporal resolution data over a long time period. In this study, a novel method is presented to identify ecologically vulnerable areas based on the normalized difference vegetation index (NDVI) time series from MOD09A1. Here, ecologically vulnerable areas are defined as those that experienced negative changes frequently and greatly in vegetation growth after the disturbances during 2000–2018. The number and magnitude of negative changes detected by the Breaks for Additive Season and Trend (BFAST) algorithm based on the NDVI time-series data were combined to identify ecologically vulnerable areas. TIMESAT was then used to extract the phenology metrics from an NDVI time series dataset to characterize the vegetation responses due to the abrupt negative changes detected by the BFAST algorithm. Focus was given to Jilin Province, a region of China known to be ecologically vulnerable because of frequent drought. The results showed that 13.52% of the study area, mostly in Jilin Province, is ecologically vulnerable. The vulnerability of trees is the lowest, while that of sparse vegetation is the highest. The response of phenology is such that the relative amount of vegetation biomass and length of the growing period were decreased by negative changes in growth for dense vegetation types. The present research results will be useful for the protection of environments being disturbed by regional ecological restoration.


2020 ◽  
Author(s):  
Oumayma Bounouh ◽  
Houcine Essid ◽  
Imed Riadh Farah

&lt;p&gt;Normalized Difference Vegetation Index (NDVI) serves as a significant reference for crop health monitoring. NDVI time series forecasting is a critical issue because of the importance of the involving fields, e.g., food scarcity, climate changes and biodiversity. Therefore, several forecasting models have been suggested and implemented in the literature. Herein, we propose a combination of forecasts using seasonally fitted probability functions changing weights. Contrary to commonly suggested combination models, this one does not rely on overall error measures and/or features, but on time slots similarities between probability density function (PDF) of real observations and forecasts. It is validated with 18 years MOD13Q1 NDVI time series describing a cereal canopy area that belongs to the northwestern of Tunisia. Additionally, the chosen forecasting models are Box Jenkins and Neural Network model. The forecasting accuracy was assessed using the root mean square error (RMSE). According to the results, each season had a different best-fit probability distribution function. Overall, these latter are: Gamma, Beta, Weillbul, and Extreme Generalised Value (EGV). Moreover, the suggested model has shown better forecasting accuracy than individual models, hybrid models and commonly used combining tool (RMSE respectively, 0.003, 0.45, 0.35, 0.38). Interestingly, another seasonally varying weights were determined based on the normal distribution. But, our suggested model showed better forecasting accuracy than this latter (RMSE of normally distributed changing weights= 0.30).&lt;/p&gt;&lt;div&gt; &lt;div&gt; &lt;div&gt;&amp;#160;&lt;/div&gt; &lt;div&gt; &lt;div&gt; &lt;div&gt;&amp;#160;&lt;/div&gt; &lt;div&gt; &lt;p&gt;&amp;#160;&lt;/p&gt; &lt;p&gt;&amp;#160;&lt;/p&gt; &lt;/div&gt; &lt;/div&gt; &lt;/div&gt; &lt;/div&gt; &lt;/div&gt;


Sign in / Sign up

Export Citation Format

Share Document